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1 Introduction

Design, implementation, and archival of very large sky surveys are playing an increasingly important role in
todays astronomy research. Current projects such as GALEX All-Sky Survey and future ones such as WISE
All-Sky Survey are destined to produce enormous catalogs of astronomical sources. The Large Synoptic
Survey Telescope is supposed to stream in large volumes of data at a high rate. It is this virtual collection of
gigabyte, terabyte, and (eventually) petabyte catalogs and streams that will enable remarkable new scientific
discoveries through the integration and cross-correlation of data across these multiple survey dimensions.
However, this will be difficult to achieve without a computational backbone that includes support for queries
and data mining across distributed virtual tables of de-centralized, joined, and integrated sky survey catalogs.
Moreover, use of local data management systems such as MyDB, MySpace in AstroGrid, and Grid Bricks for
storing and managing user’s local data is becoming increasingly popular. This is opening up the possibility
of constructing Peer-to-Peer (P2P) networks for data sharing and mining.

This research is exploring the possibility of using distributed and P2P data mining technology for ex-
ploratory astronomy from data integrated and cross-correlated across these multiple sky surveys. It is
considering several scientific problems in order to illustrate the possibilities. For example, we are exploring
classical fundamental plane problem in a new light which is trying to answer some of the following questions:
How does local galactic density relate to galactic fundamental plane structure? Does the fundamental plane
structure of galaxies in low density regions differ from that of galaxies in high density regions? Since the
attributes which define the fundamental plane span two data repositories SDSS and 2MASS instead of one,
we focus on cross-matching them available individually through the NVO. We are using distributed data
mining algorithms to analyze this data distributed over a large number of nodes.

The National Virtual Observatory (NVO) was developed in an effort to address this problem. The
NVO provides web-based services allowing the public to download data from many different, autonomous
sky surveys. In this project, we are examining the use of distributed data mining technology on top of
the NVO as a tool for allowing the Astronomers to tap the riches of data integrated and cross-correlated
across these multiple sky surveys. We are examining two modes of inquiry. First, with large amounts of
data downloaded and cross-matched between multiple catalogs (a difficult and time-consuming task), apply
data mining technology to address astrophysical questions that could not be as readily addressed using
only individual catalogs (see Section 2) and support for standard data-query processing. Second, develop
communication efficient, distributed data mining techniques allowing those types of analysis to be performed
across multiple catalogs without first downloading them to a central location (see Section 3). We discuss the
future work in Section 5.

2 Data Mining on the NVO

The goal of this part of the research is to explore a few important types of data mining applications that
are likely to impact the field of astronomy significantly. We would like to first identify the possibilities and
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Figure 1: P2P Data Mining on Homogeneously Partitioned Sky Survey.

then develop distributed data mining technology-based scalable, communication-efficient solutions.

2.1 DEMAC - A System for Distributed Exploration of Massive Astronomic
Catalogs

This section describes the high level design of the DEMAC system. DEMAC is designed as an additional
Web-Service which seamlessly integrates into the NVO. It consists of two basic services. The main one is Web-
Service which provides Distributed and Peer-to-Peer Data Mining capabilities for sky surveys (WS-DPDM).
The second one, which is intensively used by WS-DPDM is a Web-Service which provides Cross-Matching
capabilities for vertically distributed sky surveys (WS-CM). Cross-matching of sky surveys is a complex
topic which is dealt with, in itself, under other NASA funded projects. Thus, our implementation of this
Web-Service would supply bare minimum capabilities which are required in order to provide distributed data
mining capabilities.

This Web-Service will allow running distributed data mining algorithms on a selection of sky-surveys.
The user would use existing NVO services to locate sky-surveys and define the portion of the sky to be
mined. This process could include: (1) individual catalogs or (2) virtual tables. If the choice is to mine a
single catalog, the user may be interested in contacting his nearby peers to obtain subsets of the archived
catalog. In such a scenario, the WS-DPDM service will facilitate routing of queries to other nearby peers
on the network. On the other hand, if a virtual catalog is required, the user would need to make use of
WS-CM to select a cross-matching scheme for those sky-surveys. This specifies how the tuples are matched
across surveys to define the virtual table to be analyzed. Following these two preliminary phases the user
would submit the data mining task. Figure 1 shows a schematic diagram of the DEMAC architecture for
P2P astronomy data mining.



2.2 Data Sets

We have focused on the SDSS and 2MASS repositories available individually through the NVO. We have
created a large, hybrid dataset by downloading the 2MASS XCS catalog and cross-matched it against the
SDSS catalog (using the SDSS Crossid tool).! We filtered the data based on the SDSS identified type to
remove all non-galaxy tuples. At this point, all tuples retained represent galaxies. We then filtered the
data again based on reasonable redshift (actual or estimated) values (0.003 <= z <= 0.300). Finally, we
computed a location for each tuple (galaxy) in 3D Euclidean space and used the Delaunay Tessellation Field
Estimator to compute, for each tuple (galaxy), a measure of its local galactic density.

2.3 Mining the Relationship Between Local Galactic Density and Galactic Fun-
damental Plane Structure

At this point we had a 156,000 tuple (galaxy) dataset involving attributes from both the 2MASS and SDSS
repository and, associated with each tuple, a measure of its local galactic density. This dataset, obtained
with substantial effort, allows us to apply data mining technology to address astrophysical questions that
could not be as readily addressed using only the SDSS or 2MASS catalog individually.

We are currently focusing on addressing the question of how local galactic density relates to galactic
fundamental plane structure. Does the fundamental plane structure of galaxies in low density regions differ
from that of galaxies in high density regions? We constructed two attributes using only attributes from
SDSS: log(Petrosian I band angular effective radius*redshift) and log(velocity dispersion). Using these two
and a third from 2MASS, K band mean surface brightness, we had a dataset allowing us to address the
question more readily than we could have using only data from SDSS or 2MASS alone. We are submitting
a summary of our findings to the AGU Fall meeting 2008 for consideration by astronomers for significance.
We envision this study as only the beginning of a longer series of studies designed to address astrophysical
questions that could not be as readily addressed using only the SDSS or 2MASS catalog individually.

Using equi-depth bins with respect to the local galactic density, we partitioned the above, 3 attribute
dataset into 30 parts. For each part, we carried out the fundamental plane computation (i.e. PCA) and the
results are reported in Figure 2.3.

2.4 Astrophysical Significance

Astronomers discovered an interesting correlation among galaxy properties nearly 20 years ago, which led to
a greater understanding of the structure and formation of these fundamental building blocks of our Universe.
That correlation demonstrated that 3 of the major measured parameters for elliptical (spheroidal) galaxies are
reduced to a plane in 3-d parameter space. This has come to be known as the fundamental plane of elliptical
galaxies. Subsequently, it was demonstrated that this behavior is a result of simple gravitational physics.
The 3 parameters are size (radius), density (surface brightness), and internal velocity (velocity dispersion).
These 3 parameters are related by a physical relationship, known as the Virial Theorem, thus reducing
the dimensionality of the measured parameter set to two independent variables. A few years before the
discovery of the fundamental plane, astronomers had already discovered and began investigating intensely
another relationship: the morphology-density relation. This relationship revealed that the morphological
type distribution of galaxies (such as ellipticals versus spiral galaxies) depends strongly on the local galaxy
environment (the local density of galaxies). In particular, the higher the density, then the higher the ratio
of number of ellipticals to number of spirals, and vice versa.

With the development of major astronomical sky surveys, it is now possible to test these relationships
and their inter-relation in greater detail than ever before possible. Specifically, we have used a combination
of two major sky surveys (Sloan Digital Sky Survey [SDSS], and the 2-Micron All-Sky Survey [2MASS]) to
test numerous astrophysical hypotheses.

The first and most obvious hypothesis that we tested was to re-discover the fundamental plane of elliptical
galaxies using a small subset of the SDSS and 2MASS galaxy catalogs. In recognition of the fact that we
are doing research into efficient algorithms for distributed data mining (DDM; i.e., distributed mining of

LAll attributes of the PhotoObjAll and SpecObjAll tables as well as an estimated redshift attribute from the Photoz2 table
were obtained and joined to the cross-matched tuples from the 2MASS XCS catalog.
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distributed data), we initially focused on the DDM algorithm development, validating their outputs by
demonstrating that we could recover the fundamental plane of elliptical galaxies with the same degree of
accuracy as astronomers have done with smaller non-distributed data sets. We succeeded in these research
activities.

The next step, as proposed in our NASA AISR project, was to take these information science algorithms
and to apply them to NASA science applications on larger data collections. Again, in the interest of continuity
of our research program, we focused on the galaxy relationships through mining of the SDSS and 2MASS
catalogs. Our AISR program is aimed at developing and applying data mining on a large-scale, through
distributed computing, on large data sets. So, we decided to start with a computational problem that is
a good fit for the distributed data mining technology — testing and measuring the fundamental plane in a
large number of different galaxy environments. In other words, we would partition the data sets into a large
number of astrophysically independent sets and run the algorithms on these smaller sets. These independent
subsets are partitioned by local galaxy environment density. Note that each of these ”smaller sets” is in
fact significantly larger than any set of galaxies previously analyzed in this way. Following this procedure,
we discovered that the fundamental plane of elliptical galaxies does hold up across all galaxy environments.
Plus, we made a new scientific discovery — that the strength of the correlation increases with local galaxy
density. The higher the density, then the more variance is captured in the first PCA principal components. In
addition, the direction of the fundamental plane (i.e., its normal vector) was found to change in a systematic
manner as a function of density.

These new astrophysics discoveries are now being written up in a scientific paper to be published in a
peer-reviewed astronomy journal. We will continue to investigate additional correlations for astrophysical
significance, and then proceed to other NASA science disciplines to further test and improve our algorithms
for distributed and peer-to-peer scientific data mining.

3 Distributed Data Mining on the NVO

We are developing a system for the distributed data mining over large astronomy catalogs. The system
is to be built on top of the existing NVO and provides tools for data mining (as web services) without
requiring datasets to be down-loaded to a centralized server. We envision the system as serving the role
of an exploratory “browser”. Users will be able to quickly get results for their distributed data analysis-
queries at low communication cost. Armed with these results, users should be able to focus in on a specific
query or portion of the datasets, and down-load for more intricate analysis, if necessary. This system
will need distributed data mining algorithms. We have spent significant amount of time developing new
communication-efficient distributed algorithms for PCA and outlier detection among others. The following
part of this section discusses some of the algorithms developed during this research period.

3.1 Communication Efficient Distributed Probabilistic Algorithm for Mining
Frequent Itemsets

This part of the research focuses on developing a communication efficient algorithm for discovering frequent
itemsets from data distributed homogeneously in a networked environment. The classic frequent itemset
mining algorithm does not work in this setting as it needs to access the data in its entirety available at
one location. In a large-scale distributed environment, finding all the network-wide frequent itemsets with
exact frequency is computationally difficult and usually requires large amount of communication (often
communication per peer reaches order of the network size). Instead, this research tries to find most of
the frequent itemsets with probabilistic guarantee and their approximate frequency using only a bounded
communication. The research takes sampling based approach to identify frequent itemsets from the entire
network. It first addresses the challenging problem of collecting an unbiased uniform sample from a network,
and shows how to take a uniform sample of nodes and a uniform sample of data from a network using
random-walk. It then applies the proposed sampling technique to identify most of the frequent itemsets from
a network. Theoretical analysis shows how to bound the sample-size irrespective of the size of the entire data
and hence, communication necessary to compute the results. Experimental analysis shows that the proposed
algorithm discovers all of the network-wide frequent itemsets using only a bounded communication.



3.2 Approximate Distributed K-means Clustering

This part of the research offers the distributed K-means clustering problem where the data and computing
resources are distributed over a large network. It offers two algorithms which produce an approximation of the
result produced by the standard centralized K-means clustering algorithm. The first is designed to operate
in a dynamic network that can produce clustering by ”local” synchronization only. The second algorithm
uses uniformly sampled peers and provides analytical guarantees regarding the accuracy of clustering on a
network. Empirical results show that both the algorithms demonstrate good performance compared to their
centralized counterparts at little communication cost.

3.3 A Generic Local Algorithm for Mining Data Streams in Large Distributed
Systems

In a large network of computers or wireless sensors, each of the components (henceforth, peers) has some data
about the global state of the system. Much of the systems functionality such as message routing, information
retrieval and load sharing relies on modeling the global state. We refer to the outcome of the function (e.g.,
the load experienced by each peer) as the model of the system. Since the state of the system is constantly
changing, it is necessary to keep the models up-to-date. Computing global data mining models e.g. decision
trees, k-means clustering in large distributed systems may be very costly due to the scale of the system and
due to communication cost, which may be high. The cost further increases in a dynamic scenario when the
data changes rapidly. In this research, we describe a two step approach for dealing with these costs. First, we
describe a highly efficient local algorithm which can be used to monitor a wide class of data mining models.
Then, we use this algorithm as a feedback loop for the monitoring of complex functions of the data such as
its k-means clustering. The theoretical claims are corroborated with a thorough experimental analysis

3.4 A Scalable Local Algorithm for Distributed Multivariate Regression

This research offers a local distributed algorithm for multivariate regression in large peer-to-peer environ-
ments. The algorithm can be used for distributed inferencing, data compaction, data modeling and classi-
fication tasks in many emerging peer-to-peer applications for bioinformatics, astronomy, social networking,
sensor networks and web mining. Computing a global regression model from data available at the different
peer-nodes using a traditional centralized algorithm for regression can be very costly and impractical because
of the large number of data sources, the asynchronous nature of the peer-to-peer networks, and dynamic
nature of the data/network. This research proposes a two-step approach to deal with this problem. First,
it offers an efficient local distributed algorithm that monitors the quality of the current regression model. If
the model is outdated, it uses this algorithm as a feedback mechanism for rebuilding the model. The local
nature of the monitoring algorithm guarantees low monitoring cost. Experimental results observed in this
component of the research strongly support the theoretical claims.

3.5 Distributed Decision Tree Induction in Peer-to-Peer Systems

This part of the research offers a scalable and robust distributed algorithm for decision tree induction in large
Peer-to-Peer (P2P) environments. Computing a decision tree in such large distributed systems using standard
centralized algorithms can be very communication-expensive and impractical because of the synchronization
requirements. The problem becomes even more challenging in the distributed stream monitoring scenario
where the decision tree needs to be updated in response to changes in the data distribution. This research
presents an alternate solution that works in a completely asynchronous manner in distributed environments
and offers low communication overhead, a necessity for scalability. It also seamlessly handles changes in
data and peer failures. This research presents extensive experimental results to corroborate the theoretical
claims.



3.6 Local Algorithms for Distributed Multivariate Regression in Peer-to-Peer
Networks

This research offers a local distributed algorithm for multivariate regression in large peer-to-peer environ-
ments. The algorithm is designed for distributed inferencing, data compaction, data modeling and classi-
fication tasks in many emerging peer-to-peer applications for bioinformatics, astronomy, social networking,
sensor networks and web mining. Computing a global regression model from data available at the different
peer-nodes using a traditional centralized algorithm for regression can be very costly and impractical because
of the large number of data sources, the asynchronous nature of the peer-to-peer networks, and dynamic
nature of the data/network. This research proposes a two-step approach to deal with this problem. First,
it offers an efficient local distributed algorithm that monitors the quality of the current regression model. If
the model is outdated, it uses this algorithm as a feedback mechanism for rebuilding the model. The local
nature of the monitoring algorithm guarantees low monitoring cost. Experimental results strongly support
the theoretical claims.

3.7 Distributed Identification of Top-1 Inner Product Elements and its Appli-
cation in a Peer-to-Peer Network

Inner product measures how closely two feature vectors are related. It is an important primitive for many
popular data mining tasks, e.g., clustering, classification, correlation computation, and decision tree con-
struction. If the entire data set is available at a single site, then computing the inner product matrix
and identifying the top (in terms of magnitude) entries is trivial. However, in many real-world scenarios,
data is distributed across many locations and transmitting the data to a central server would be quite
communication-intensive and not scalable. This research offers an approximate local algorithm for identi-
fying top-l inner products among pairs of feature vectors in a large asynchronous distributed environment
such as a peer-to-peer (P2P) network. We develop a probabilistic algorithm for this purpose using order
statistics and Hoeffding bound. We present experimental results to show the effectiveness and scalability
of the algorithm. Finally, we demonstrate an application of this technique for interest-based community
formation in a P2P environment.

3.8 Distributed Top-K Outlier Detection from Astronomy Catalogs using the
DEMAC System

The design, implementation and archiving of large sky surveys is an important part of astronomy research.
The Sloan Digital Sky Survey (SDSS), The Two Micron All Sky Survey (2MASS) are some such surveys pro-
ducing tera bytes of geographically distributed data which need to be stored, analyzed and queried to enable
scientific discoveries. In this research, we develop the architecture of a system for Distributed Exploration of
Massive Astronomy Catalogs (DEMAC) which is built on top of the existing National Virtual Observatory
environment. We describe distributed algorithms for doing Principal Component Analysis (PCA) using ran-
dom projection and sampling based techniques. Using the approximate principal components, we develop a
distributed outlier detection algorithm which enables identification of data points that deviate sharply from
the “correlation structure” of the data. We provide simulation results with data obtained from sky-surveys

SDSS and 2MASS.
4 Milestones for Year I: Review
This section describes the achieved milestones for the first year.

1. Detailed design of a research prototype based on various web-based distributed data mining algorithms.
2. Establishment of local testbed including 3-4 datasets.

3. Modeling of the astronomy research problem, development of user requirements and additional algo-
rithms required, detailed design of a catalog alignment Web-Service.



The astronomical problem we have chosen is the fundamental plane problem and we have decided to
identify galatic properties that uniquely determine the fundamental problem. We have chosen our data
sources as the SDSS and 2MASS databases. In the current test-bed, we have used cross-matched data
from these separate sources. The results have shown that galactic density can be considered an important
galactic property that determines the fundamental plane. Simultaneously, we have developed distributed
algorithms for distributed PCA computation, distributed outlier detection and distributed ordering using an
order statistics based distributed algorithm. These algorithms plays a key role in the design of the proposed
distributed data mining system for virtual observatories.

5 Future Work

The immediate goals for the second year research are as follows:

1. Development of additional distributed and peer-to-peer distributed data mining algorithms.
2. Implementation of the prototype system along with the distributed data mining algorithms.
3. Testing of the prototype using the identified astronomy problem.

4. Web-based user interface development.
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Abstract

The design, implementation and archiving of very large sigveys is playing an increasingly
important role in today’s astronomy research. These dathives are geographically distributed and
heterogeneous in nature. Existing techniques for knovdeddraction from this data require download-
ing the archives to a centralized site. However, mergingeafate data at a central site to perform data
mining will result in unnecessary communication overhéa@. believe, to fully exploit the potential
of this data, mechanisms ought to be provided for more conicatian efficient multiple archive data
analysis.

In this paper, we describe a system for Distributed Explonadf Massive Astronomical Catalogs
(DEMAC). The system is designed to be integrated on top okttisting National Virtual Observatory
environment and provides tools for distributed data mir(exg web services) without requiring datasets
to be fully down-loaded to a centralized server. To illutrthe potential effectiveness of our system,
we develop communication-efficient distributed algorighfor (1) Principal Component Analysis (PCA)
and (2) outlier detection. We perform case studies on retbAemy data to evaluate the performance of
our algorithms on the fundamental plane of astronomicapaters. In particular, PCA enables dimen-
sionality reduction within a set of correlated physicalgraeters such as a reduction of a 3-dimensional
data distribution (in astronomer’s observed units) to a@tadata distribution (in fundamental physical
units). Outlier detection enables identification of “irdsting” galaxies that do not fall in this planar
distribution. Fundamental physical insights are therebgbéed through efficient access to distributed

multi-dimensional data sets.

Index Terms

Distributed Data Mining, Astronomy Catalogs, Cross MatchiPrincipal Component Analysis,

Outlier Detection.

. INTRODUCTION

The design, implementation and archiving of very large skyeys is playing an increasingly
important role in today’s astronomy research. Many prgjéeg. GALEX All-Sky Survey, WISE
All-Sky Survey and LSST Large Synoptic Survey) are prodg@normous catalogs (tables) of
astronomical sources (tuples). These catalogs are gdogadlp distributed. If science progressed
through these individual data archives alone, then thereiproblem. However, some of the
greatest scientific discoveries have come at the intecseofidifferent disciplines — in astronomy,

this means at the intersection of different wavelength domdor example: the most luminous
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galaxies in the Universe (Ultra-Luminous and Hyper-LumisdR Galaxies) were found through
the comparison of IR and optical data; Quasars and PoweddidRGalaxies were found through
the combined analysis of radio and optical data. To maketgreagress in astronomy, it is

imperative to link these distributed data collections amgbrtovide tools that enable analysis of
distributed data.

In this paper, we describe a system for the Distributed Enaplon of Massive Astronom-
ical Catalogs (DEMAC). DEMAC offers a collection of data nmg tools based on various
DDM algorithms. The system is built on top of the existing idaal Virtual Observatory [1]
environment and provides tools for data mining (as web ses)i without requiring datasets
to be down-loaded to a centralized server. The algorithmsdexelop sacrifice accuracy for
communication savings. They offer approximate results etresiderably lower communication
cost than that of exact results through centralization. échswe see DEMAC as serving the
role of an exploratory “browser”. Users can quickly get (gely quite accurate) results for
their distributed queries at low communication cost. Arméth these results, users can focus
in on a specific query or portion of the datasets, and dowd-foamore intricate analysis.

Since these attributes are now necessarily distributedsacgeographically dispersed data
archives, it is scientifically valuable to explore distiiéd Principal Component Analysis (PCA)
and outlier detection on larger astronomical data colbestiand for greater numbers of as-
trophysical parameters. The application of communicagéfficient distributed PCA and outlier
detection along with other DDM algorithms will likely en&bhew scientific insights into our
Universe.

To illustrate the potential effectiveness of our system, degelop communication-efficient
distributed algorithms for PCA and outlier detection. Wergaut case studies using distributed
PCA for detecting fundamental planes of astronomical patara. Astronomers have previously
discovered cases where the observed parameters measueegddicular class of astronomical
objects (such as elliptical galaxies) are strongly coteelaas a result of universal astrophysical
processes (such as gravity). PCA will find such correlatiarte form of principal components.

Examination of a subset of the parameter space can also belmamers identify objects
with atypical behavior ([2],[3]). It is therefore importato systematically explore the observable
parameter space, and specifically search for rare, unusuateviously unknown types of astro-

nomical objects and phenomena. For example, examinatitineofhree dimensional parameter
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space formed by the difference of petrosian flux in the R ananids, the K-band mean surface
brightness and logarithm of the K-band concentration inday lead to identification of galaxies
that were previously not known to be “interesting”. This vaties the need for designing outlier
detection algorithms.

The rest of the paper is organized as follows. Section Iludises related work on analysis
of large scientific data collections as well as DDM. Sectitindescribes the architecture of
the DEMAC system. Section IV presents the data analysisi@mladdressed in this paper:
analyzing distributed astronomical virtual catalogs.t®ecV reviews PCA background material.
Sections VI and VIl describe distributed algorithms fortwal catalog PCA and outlier detection,
respectively. Section VIII provides a two case studies talwate the effectiveness of our
distributed techniques: finding galactic fundamental ptaand galactic outlier detection. Finally,

Section IX concludes the paper.

Il. RELATED WORK
A. Analysis of Large Scientific Data Collections

There are several instances in the astronomy and spacessigsearch communities where
data mining is being applied to large data collections ([8]). Some dedicated data mining
projects include F-MASS [6], Class-X [7], the Auton Astraisstics Project [8], and additional
VO-related data mining activities (such as SDMIV [9]). Irsestially none of these cases does
the project involve truly DDM [10], [11], [12].

One of the first large-scale attempts at grid data mining &roaomy is the U.S. National
Science Foundation (NSF) funded GRIST [13] project. The &IRgoals include application of
grid computing and web services (service-oriented arctutes) to mining large distributed data
collections. GRIST is focused on one particular data mogdalinages. Hence, GRIST aims to
deliver mining on the pixel planes within multiple distriled astronomical image collections.
The project that we are proposing here is aimed at anotherrdatlality: catalogs (tables) of
astronomical source attributes. GRIST and other projdstssirive for exact results, which usu-
ally requires data centralization and co-location, whigtifer requires significant computational
and communications resources. DEMAC (our system) prodaggsoximate results without
requiring data centralization (low communication ovedjedJsers can quickly get (generally

quite accurate) results for their distributed queries atdommunication cost. Armed with these
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results, users focus in on a specific query or portion of thas#ds, and down-load for more
intricate analysis.

The U.S. National Virtual Observatory (NVO) [1] is a largeakreffort funded by the NSF to
develop a information technology infrastructure enabkagy and robust access to distributed
astronomical archives. It will provide services for us@rséarch and gather data across multiple
archives and some basic statistical analysis and vistializéunctions. It will also provide a
framework for new services to be made available by outsidigsa These services can provide,
among other things, specialized data analysis capabiliie such, DEMAC fits nicely into the
NVO as a new service.

The International Virtual Observatory (IVO) [14] is anotHarge scale effort to develop an
infrastructure enabling easy and robust access to digtdastronomical archives. Generally, the
Virtual Observatory can be seen as part of an ongoing tremdrtbthe integration of information
sources. The main paradigm used today for the integratioinede data systems is that of a
data grid [15], [16], [17], [18], [19], [20], [21], [22]. Amig the desired functionalities of a
data grid, data analysis takes a central place. As sucle #rerseveral projects [23], [24], [25],
[13], [26], [27], which in the last few years attempt to ceeat data mining grid. In addition,

grid data mining has been the focus of several workshops [28].

B. Distributed Data Mining

DDM is a relatively new technology that has been enjoyingsatgrable interest in the recent
past [30], [11]. DDM algorithms strive to analyze the dataidistributed manner without down-
loading all of the data to a single site (which is usually rsseey for a regular centralized data
mining system). DDM algorithm naturally fall into two catages according to whether the data
is distributed horizontally (with each site having someld# tuples) or vertically (with each site
having some of the attributes for all tuples). In the lattase; it is assumed that the sites have
an associated uniquelidised for matching. In other words, consider a tuplnd assume site
A has a part of this tuple,,, and B has the remaining patt;. Then, the id associated with

equals the id associated witlh.?

1The unique id can be a primary key.

2Each id is unique to the site at which it resides; But, ids caticin across sites; a tuple at sitecan have the same id as a
tuple at siteB.
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The NVO can be seen as a case of vertically partitioned dssanaing ids have been generated
by a cross-matching service. With this assumption, DDM mlgms for vertically partitioned
data can be applied. These include algorithms for PCA [3H], [clustering [33], [31], Bayesian
network learning [34], [35], and supervised classifica{@®], [37], [38], [39], [40]. Kargupta and
Puttagunta [32] developed a randomized algorithm for ithsted Principal Component Analysis

from vertically partitioned data. Our work in [41] is a slifjhrevised version of [32].

C. Outlier Detection

Due to the fact that the definition of an outlier is inherentiyprecise, many approaches
have been developed for detecting outliers. We will notmagtea comprehensive citation listing,
instead, the reader is referred to Hodge and Austin [42] foexcellent survey mostly focusing
on outlier detection methodologies from machine learnpaidtern recognition, and data mining.
Also, Barnett and Lewis [43] provide and excellent surveyoatlier detection methodologies
from statistics. Note, some work has been done on parabyeri#hms for outlier detection on
horizontallydistributed data (not in an astronomy context) [44]. Howgete our knowledge, no

work has been done on outlier detection over verticallyriisted data.

D. Our Prior Work

This paper extends our prior work in [41] and [45] in the fallog ways.

1) We have greatly extended the discussion of the systenitegtire and related work.

2) For distributed outlier detection algorithm, we have iified the algorithm to require only
one invocation to find the top k outliers rather than k seamatocations. Moreover, we
have extended the correctness proof to include all its ldetai

3) For the distributed outlier detection experiments, wegeheeplaced the accuracy metric
with two more meaningful ones and have carried out more skterexperiments. More

comments on this are provided in Section VIII.

Ill. DEMAC - A SYSTEM FORDISTRIBUTED EXPLORATION OF MASSIVE ASTRONOMICAL

CATALOGS

In order to meet the challenges of the multi-archive datalyaisaproblem faced by the

astronomy community, the U.S. National Virtual ObservafdivO) [1] and an International

May 3, 2008 DRAFT



User A User B

User A UserB Data Mining Data Mining
Model Model

Downloaded Downloaded
Table Table

Web Services
Web Services Select | Downluadl Cross-Match | Data Mining

Select | Downloacll Cross—Match (In Implementation)

NVO

Nvo [ Distributed Data Mining ] [ Distributed Data Mining ] [ Distributed Data Mining ]—
| NVO Xface NVO Xface NVO Xface NVO Xface NVO Xface NVO Xface
‘ Sky-Survey | Sky-Survey Il Sky-Survey IlI ’ ‘ Sky-Survey | ’ ‘ Sky-Survey Il ’ ‘ Sky-Survey Il ’

(a) Current data flow is restricted because of data owneesidigb) Distributed data mining algorithms can process large
bandwidth considerations. amounts of data using a small amount of communication. The

users get the data mining output rather than raw data.

Fig. 1. Proposed data flow for distributed data mining embddd the NVO.

Virtual Observatory (IVO) [14] has been developed and dggidio However, processing, mining,
and analyzing these distributed and vast data collectioasumdamentally challenging tasks
since most off-the-shelf data mining systems require tht@ ¢t be down-loaded to a single
location before further analysis. This imposes serioutabddy constraints on the data mining
system and fundamentally hinders the scientific discoveoggss. Figure 1 further illustrates
this technical problem. The left part depicts the currertadw in the NVO. Through web
services, data are selected and down-loaded from multigptesisrveys.

Our system requires a conceptually simple modification —&thdition of a distributed data
mining functionality in the sky servers. This allows DDM te lsarried out without having to
down-load large tables to the users’ desktop or some otmeotee machine. Instead, the users
will only down-load the output of the data mining process &admining model); the actual data
mining from multiple data servers is performed using comitation-efficient DDM algorithms.

This section describes the high level design of the DEMAQGesys DEMAC is designed as
an additional web-service which seamlessly integrates tiné NVO. It consists of two basic
services. The main one is a web-service providing DDM cdpigsi for vertically distributed sky
surveys WS-DDM. The second one, which is intensively used by WS-DDM, is &-service
providing cross-matching capabilities for vertically trisuted sky surveyswWS-CN).

To provide a distributed data mining service, DEMAC religs ather services of the NVO
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such as the ability to select and down-load from a sky sureayguSQL. Key to our approach is
that these services be used not over the web, through the BMO®ather by local agents which
are co-located with the respective sky survey. In this wag, DDM service avoid bandwidth
and storage bottlenecks, and overcomes restrictions vdreldue to data ownership concerns.
Agents, in turn, take part in executing efficient distrimbigata mining algorithms, which are
highly communication-efficient. It is the outcome of thealatining algorithm, rather than the
selected data table, that is provided to the end-user. \Wghrdmoval of the network bandwidth
bottleneck, the main factor limiting the scalability of tHestributed data mining service would
be database access. For database access we intend to rely @1t interface provided by the
different sky-surveys to the NVO.

We outline here the architecture for the two web-serviceh@&DEMAC system.

A. WS-DDM — DDM for Heterogeneously Distributed Sky-Susvey

This web-service allows running a DDM algorithm on a setattof sky-surveys. The user
uses existing NVO services to locate sky-surveys and defiagortion of the sky to be data
mined. Then the WS-CM is used to select a cross-matchingreelier those sky-surveys. This
specifies how the tuples are matched across surveys to deéingrtual table to be analyzéd
Following these two preliminary phases the user submitgtita mining task.

Execution of the data mining task is scheduled according$ource availability. Specifically,
the size of the virtual table selected by the user dictateedding. Having allocated the required
resources, the data mining algorithm is run by agents whielta-located with the selected sky-
surveys. These agents access the sky-survey through thard€face it exposes to the NVO
and communicate with each other directly, over the Inteéten the algorithm has terminated,

results are provided to the user using a web-interface.

B. WS-CM - Cross-Matching for Heterogeneously Distribugégt-Surveys

Before the application of any distributed data mining aifpon on the astronomy catalogs,

we must first consider the problem of cross-matching thelagga The process can be briefly

3The procedure for cross-matching is illustrated by an exaritpsection 111-B
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ID | RA | DEC| A
P | rai | deci | a1
P | ras | deco | as
Ps | ras | decs | as

illustrated as follows:

1) Consider the catalogs P and Q shown in Table I. Each recamrésponds to a celestial
object and contains right ascension (RA) and declinatioB@Pattributes indicating the
position of the object in the celestial sphere. The recondsatalog P have a unique ID
(with respect toP) and an additional attribute A. Likewise the records in Qéhawnique
ID (with respect to)) and an additional attribute B.

2) A record in P whose RA and DEC coordinates are very élasethe RA and DEC
coordinates of a record in Q is deemed to refer to the samsti@@lebject. Thus, we can
consider thevirtual table (virtual catalog of matched records between the catalogs — see
Table Il. The unique IDs are dropped since they play no rolthévirtual catalog.

Central to the DDM algorithms we develop is the assumptiat the virtual catalog can

be treated as vertically partitioned (see Section Il for dedinition). This means that th&"

records in each real catalog match and form t#ierecord in the virtual catalog. To realize

“4in this example, identical
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ID | RA| DEC | B
Q1 | ras | decs | b
Q2 | raz | deca | b2
Q3 | rar | deci | bs

TABLE |

CATALOGS P AND Q.

RA

DEC | A

rai

deci | a1

ba

raz

deca | as

b2

TABLE I

VIRTUAL CATALOG BETWEEN P AND Q.
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ID | RA|DEC| A ID | RA | DEC| B
MATCH ID MATCH ID

Py | rai | deci | a1 Q1 | rasa | deca | b1
P Qs

Py | raz | deca | a2 Q2 | raz | deca | b2
P Q2

Ps; | ras | decs | a3 Qs | rar | decy | ba

TABLE 1lI

CATALOGS P AND Q WITH MATCHING INDICES.

this assumption, each pair of catalogs must have co-locatdibtinct pair of match indices.
Each index is a list of pointers; both indices have the sanmban of entries. Theé' entry in
each catalogs’ index points to the actual matching tuplesekample, the matching indices for
catalogs P and Q above are depicted in Table Ill. Observer#tards P, and (3 match and
form the first record in the virtual catalog. ThuB, has as its first matching inde¥;, and @)
has as its first);. Likewise recordsP, and (@, match and form the second record in the virtual
catalog. Thus,P has as its second matching indg%, and @) has as its secon@,. Finally,
since recordsP; and ); do not match, they have no corresponding matching indicksarl,
algorithms assuming a vertically partitioned virtual ®&lglan be implemented on top of these
matching indices.

Creating these indices is not an easy job. Indeed, crosshimgtsources is a complex problem
for which no single best solution exists. The WS-CM web-geris not intended to address
this problem. Instead it uses already existing soluti@ng,(the cross-matching service already
provided by the NVO), and is designed to allow other solgitmbe plugged in easily. Moreover,
cross-matching the entirety of two large surveys is a vemyeiconsuming job and requires
centralizing (at least) the RA, DEC coordinates of all tgpieom both.

Importantly, the indices do not need to be created each tidegaamining task is run. Instead,
provided the sky survey data are static (it generally is3hgaair of indices only need be created
once Then any data mining task can use them. In particular the D&8Ws we develop can use

them. The net result is the ability to mine virtual tablesat lcommunication cost.
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IV. DATA ANALYSIS PROBLEM: ANALYZING DISTRIBUTED VIRTUAL CATALOGS

We illustrate the problem with two archives: the Sloan gBky Survey (SDSS) [46] and
the 2-Micron All-Sky Survey (2MASS) [47].Each of these has a simplified catalog containing
records for a large number of astronomical point sourcesjaup of 100 million for SDSS
and 470 million for 2MASS. Each record contains sky coortiaagRA,DEC) identifying the
sources’ position in the celestial sphere as well as mangrattiributes (460+ for SDSS; 420+
for 2MASS). While each of these catalogs individually pams valuable data for scientific
exploration, together their value increases significartlyparticular, efficient analysis of the
virtual catalog formed by joining these catalogs would exdeetheir scientific value significantly.

DEMAC addresses the data analysis problem of developingraamcation-efficient algo-
rithms for analyzing user-defined subsets of virtual casld he algorithms allow the user to
specify a regionR in the sky and a virtual catalog, then efficiently analyze sbbset of tuples
from that catalog with sky coordinates iR. Importantly, the algorithms we describe do not
require that the base catalogs first be centralized and thealicatalog explicitly realized.
Moreover, the algorithms are not intended to be a substiiuteexact, centralization-based
methods currently being developed as part of the NVO [6], Rdther, they are intended to
complement these methods by providing, quick, commurunagificient approximate results to
allow browsing. Such browsing will allow the user to bettecds their exact, communication-
expensive, queries.

Sections VI and VIl describe some DDM algorithms that areoiporated as part of the
WS-DDM web service for addressing the following problemistual catalog PCA and virtual

catalog outlier detection. Before doing so, some PCA bamkupl is reviewed.

V. PCA BACKGROUND

PCA is a well-established data analysis technique used iarge Inumber of disciplines:
astronomy, computer science, biology, chemistry, clife@tg geology,etc For a more detailed

treatment of PCA, the reader is referred to [48].

0ur approach easily scales to more than two sky-surveys.ebenwvwe use this as an illustrative example for the rest ef th
paper.
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A. PCA Theory

Given X, anm-dimensional random vector, the goal of PCA is to find a limeapping ofX
whose resultingn-dimensional random vector has uncorrelated componenbsweith maximum
variance. As is standard practice, we assume AMhditas mean vector zero. L&' denote the
covariance matrix oft, A > Ay > ... > A\ > 0 denote its eigenvalues, ang, vy, ..., vk
denote their associated eigenvectors (pair-wise orthaigamd of length one). Th¢ principal
directionof X is v¥. The ;" principal componen{PC) of X is denotedz* and equalst”v;'.

It can be shown that the PCs are pair-wise uncorrelated (bencecovariance) and capture the
maximum possible variance in the following sense. For eagh;j < m, there does not exist
v € R™ orthogonal tov;* for all 1 < ¢ < j such that the variance of”v is greater than the
variance ofz* = X"v. It can further be shown that the variancexgf = X7v* equals\y'.

Consider the random vectd&?, = (z{",...zY)". If r = m, then 22, is simply a different
way of representingt’ becauseX = VX (ZZ,)" where whereV is the n x r matrix with
columnsvft, ..., v;¥. However, ifr < m, thenZZ, is a lossy lower dimensional representation

of X. The amount of loss is typically quantified as

DAY
100 [W] , 1)

the “percentage of variance” captured by the lower dimaraioepresentation. The larger the
percentage captured, the betﬁj represents the “information” contained in the originalteec
X. If r is chosen so that a large percentage of the variance is edptilren, intuitively,Zé“r,
captures many of the important features Bf So, subsequent analysis dfg’r can be quite

fruitful at revealing structure not easily found by exantioa of X’ directly.

B. PCA in Practise

In practice,>% is typically not known is estimated from a dataset denoted/asann x m
matrix with real-valued entries. The rows &1 represent data records. L&f’ denote thej*"
column andM’ (i) denote thei* entry of this column. Le:()7) denote thesample mearof
this columni.e.

() = w 2)
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To accommodate the fact that is assumed to have zero mean, the dataset is standardized
so that each column of#/ has zero sample mean. This is done by subtracticy’) from
each entry in\//. From the standardized dataset, an estimiaie generated foE*. Finally, the
eigenvalues and their associated eigenvectors (pairavisgegonal and unit length) are generated
from X: A\ > Xy > ... >\, > 0anduvy, vs, ..., v, The ;™ principal component is denoted
z; and equalsMwv; (the projection ofM along thev; direction). Z,, the n x r matrix with
columnszy,..., z., can be thought of as a lossy lower-dimensional representaf //. The

amount of loss is quantified as

100 [%{1 ij ] , (3)

the “percentage of variance” captured by the leadirfeCs.

Outlier detectionClearly the leading PCs carry valuable information. Howgthee lower PCs
do too. Some techniques for outlier detection have beenlale»@ based on the lower PCs [48],
[49], [50], [51], [52]. These techniques look to identifytdaecords which deviate sharply from
the “correlation structure” of the data. Before discusgimgtechnical details, let us first describe
what is meant by a point deviating from the correlation gtices by means of an example.

Example 1:Consider a dataset where each row consists of the height eigthtof a group of
people (borrowed from [48] page 233). We expect that a stpmgitive correlation will exist —
small (large) weights correspond to small (large) heightsow with height 70 in. (175 cm) and
weight 55 Ibs (25 kg) may not be abnormal when height or weighaken separately. Indeed,
there may be many people in the group with height around 70esghw around 55. However,
taken together, the row is very strange because it viol&esisual dependence between height
and weight. O

In Example 1, the outlying record will not stand out if the jeion of the data on each
variable is viewed. Only when the variables are viewed togigedoes the outlier appear. The same
idea generalizes to higher dimensional data. An outliey stdnds out when all of the variables
are taken into account and does not stand out over a prajemtim any proper subset. Automated
tests for detecting “correlation outliers” are quite vdllea The “low variance” property of the
last principal components makes them useful for this job.

Recall that thej PC, z; = Mu;, has sample variancg; i.e. the variance over the entries
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of z; is A\;. Thus, if \; is very small and there were no outlier data records, one dvexpect
the entries ofz; to be nearly constant. In this cass, expresses a nearly linear relationship
between the columns af/. A data record which deviates sharply from the correlatibacsure

of the data will likely have itsz; entry deviate sharply from the rest of the entries (assuming
no other outliers). Since the last components have the sstalls, then an outlier’s entries in
these components will likely stand out. This motivates exation of the following statistic for
the i** data record (thé' row in M):

d7; = 2z (i)’ (4)

wherez,, (i) denotes the' entry of z,,. A possible criticism of this approach is pointed out in
[48] page 237: “it {zlii] still gives insufficient weight to the last few PCs, [...] @aise the PCs
have decreasing variance with increasing index, the valfieg:)? will typically become smaller
asj increases, andfﬂ. therefore implicitly gives the PCs decreasing weightg agreases. This
effect can be severe if some of the PCs have very small vasarand this is unsatisfactory as
it is precisely the low-variance PCs which may be most effect.”

To address this criticism, the components are normalizegivio equal weight. Letv; denote
the normalized; principal direction: them x 1 vector, 4;, whose:"" entry is if/—% The
normalized;™ principal component i$; = Mw;. The sample variance of; equals one, so,
the weights of the normalized components are equal. Thiststave use for the® data point

is (following notation in [48])

d%,i = 2;1(7;)2- %)

Data tuples with largel3 ; values can be regarded as outliers.

VI. VIRTUAL CATALOG PCA

In this section we describe two distributed algorithms fppraximating the PCs on a virtual
catalog,M. Both assume that the participating sites have the ap@tepmatch indices. Hence,
we describe the algorithms under the assumption that tleidaach site is perfectly aligned —

the " tuple of each site match (sites have exactly the same nunfibeples). For simplicity, we
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assumel/ has been vertically distributed over two sitgés and.Sz.6 S, has the firsp attributes
and Sp has the last attributes f + ¢ = m). Let A denote then x p matrix representing the
dataset held by54, and B denote then x ¢ matrix representing the dataset held By. Let
[A : B] denote the concatenation of the datasets)/ = [A : B]. Both perform the same basic

two steps.

1) A distributed computation is performed to produce a sangavariance matrix}: (an
estimate of the true covariance matkix). Upon completiony. is contained at each site.

2) Each site independently computes the eigenvalues aedwsEgtors of.

The algorithms differ only differ in their computation &f (first step).

A. Covariance Estimation Through Random Projection

This technique uses the straightforward standard formaotaektimating covariancer =
Cov(M) where the(j, k)" entry of Cov(M) is

2ic [p(M7) — MY (@)][p(M*) — M*(@)]

n—1

If M has been standardized((/?) subtracted from each entry i/’), then

(6)

5o WP B

The only part of computing: (including standardization) requiring communicationA$ B.
Hence, it suffices to estimaté’ B in a communication-efficient manner. The key idea in doing
so is based on the following fact echoing the observationemad53] (and elsewhere) that
high-dimensional random vectors are nearly orthogonal.

Fact 1: Let R be an/ x n matrix each of whose entries is drawn independently from a
distribution with variance one and mean zero. It followstthaR” R] = ¢I,, where I, is the
n X n identity matrix.

Algorithm VI-A.1 is used for computingd” B. The result is obtained at both sites. In the
communication cost calculations, we assume a number (fpabint or integer) requires 4 bytes

of storage.

bAs stated earlier, this assumption can be easily relaxed.
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Algorithm VI-A.1 Random Projection Based Distributed Covariance Matrixniation
1. 54 sendsSg a random number generator segtl bytes]

2. 54 and Sp generate ari x n random matrixk. Each entry is generated independently and
identically from a distribution with mean zero and variaroes.
3. 54 sendsRA to Sg; Sg sendsRB to S,. [4m/{ bytes]

4.5, and Ag computeD = (RA)T#.
Note that,
T T T T
ED = E {A (Rg R)B} _ A E[I; R|B _ATR @)

The last equality is due to Fact 1. Hence, on expectationakhperithm is correct. Its commu-
nication cost (bytes) divided by the cost of the centraimatechnique,
dml+4 /¢ 1
=t ®)

)
4dnm n o nm

is small if ¢ << n. Indeed? provides a "knob" for tuning the trade-off between commatan-

efficiency and accuracy. Later, in our case study, we presqueriments measuring this trade-off.

B. Covariance Estimation Through Uniform Sampling

This technique simply computeSou(.) over a standardized, uniform sample of rows from
M. To accomplish this, Algorithm VI-B.1 is used.
Its communication cost (bytes) divided by the cost of thetredization technique is
dpnm + 4 1
— =D+ —. (9)

dnm nm
As before,p provides a "knob" for tuning the trade-off between commatian-efficiency and

accuracy. Later, in our case study, we present experimeaésuming this trade-off.

VIl. VIRTUAL CATALOG OUTLIER DETECTION

Broadly speaking, outlier detection has two important soldata cleaning and data mining.

Firstly, data cleaning is used during data preparationestagor example, if a cross-matching
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Algorithm VI1-B.1 Uniform Sampling Based Distributed Covariance Matrix Esttion
1. 54 sendsSg a random number generator segtl bytes]

2. S, and Sy uniformly select a fractiorp € (0,1] of their tuples denotedd’ and B/,
respectively. Note, the'" tuple in A’ matches the’ in B’, thus,[4’ : B'] is a uniform
sample of[A : B].

3.5, standardizes!’ by subtracting:( A7) from each entry iM’ (1 < j < p). Sp standardizes
B’ by subtractingu(B’) from each entry inB’ (1 < j < g).

4. S, sendsA’ to Si; S sendsB’ to Sy. [4pmn bytes)

5. 54 and S computeCouv([A" : B']).

technique wrongly joined a pair of tuples, then the matchaaet will likely have properties
making it stand out from the rest of the data. An outlier diédagrocess might be able to identify
the matched tuple and allow human operators to check for anojper match. Secondly, outlier
detection can be used to identify legitimately matcheddsipVith unique properties. These may
represent exceptional and interesting astronomical thjégain, a human operator is alerted
to further examine the situation.

In this section, we develop a distributed algorithm for muttletection based on the PCA metric
described earlier for scoring data records. Specificatlg, dutlier detection problem addressed
is as follows. Givenk (a user-specified parameter) anfl a dataset vertically distributed over
sites S, and Sg, find the topk data records inV/ with respect tod%y_ (ties broken arbitrarilyy.
The algorithm we develop employs two basic steps.

1) An algorithm from Section VI is applied to approximate tlast normalized principal

direction,v,,. At the end, each site has this approximation, denoted,as

2) Let z;, denoteMwv,, and ggﬂ. denotez,,(i)?. A distributed computation is carried out to

compute the togk data records with respect @

The chief difficulty to overcome in developing a distributaldorithm for the second step is
the fact thatoigyi cannot be directly computed. Even though both sites hgydrom the first
step,ngi requires information from both sites to compute. To maks thaint clear, let,,(A)

andu,,(B) denote thep x 1 andg x 1 vectors consisting of the firgt entries ofv,, and lastg

"As mentioned earlier, this two site assumption can be easiixed, but is employed for simplicity of exposition.
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entries ofv,,, respectively. These are the partsif)f corresponding to the attributes &t and

Sg, respectively. Since,, = Mv,, = [A: B]v,,, we have

Zm = Avp (A) + Buy,(B). (20)

Let z}g denote the first vectofn x 1) in the above sum. It can be computed entirelySat
Let 25 denote the second vector x 1) in the above sum. It can be computed entirelySat

Letting z;ﬁ(i) and z}?1 denote the’ entries, we have

d5; = (28 (i) + 2B(0))". (11)
Hence, the second step above requires a distributed &lgofir computing the tog among
(2A(1) + 2B(1))2, ..., (zA(n) + zB(n))2. It suffices to solve the following problem.

Problem 1 (Distributed Sum-Square Top k (DSSTKite S, hasay, ..., a, € R andSp has
by,...,b, € R. Both sites have integet > k£ > 0. The sites must compute the tépamong
c1= (a1 +b1)% ..., cn = (a, +by)*

A communication-efficient algorithm for solving this preioh is developed next. Unlike the
algorithm for distributed PCA, this one is not approximatgs-output is the correct top. The

algorithm assumes that ties are broken by choosing therlargex?

A. An Algorithm for the DSSTK Problem

Developing a communication-efficient distributed aldgaomtwhich directly solves the DSSTK
problem is challenging. Instead we show how solving DSSTK be reduced to solving a
simpler problem: compute the tdpamong(a; + b1), ..., (a, + b,) (the Distributed Sum Top
k (DSTK)Problem). Then we develop a communication-efficient atgorifor DSTK.

Leti¢ denote the index of thg’" largest value amon@; +b1)?, .. ., (a,+b,)%. Leti! denote
the index of thep!” largest value amongu, +by), ..., (a, +b,). Let i, denote the index of the
p'" largest value among-(a; + b,), ..., —(a, + b,). We have,

if— if (aij + bif)2 > (ai; + bi;)QQ

i, otherwise

(12)

8The choice of tie-breaking mechanism is immaterial for thgorthm. Any linear ordering will do.
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Indeed, by definition{a;c + b;c)* > (a; + b;)* for any 1 < j < n. Thus, if (a;c 4 bic) > 0,
then (ae + be) > (a; +b;) for any 1 < j < n. Otherwise,—(a; + bic) > —(a; + b;) for any
1 < j < n. Hence,i$ equalsi{ or ;. Equation (12) follows. Furthermore, by throwing away
the (i)™ values from each of the three lists and applying Equation), (tt2 analogous result

holds for:§. Repeating this process yields the following key result:

i;— if (ai; + bi;)2 > (ai; + bi;)2§
iy otherwise

Equation (13) implies that the DSSTK Problem is solved byyiag out the following two basic

.
foranyl <p <mn, iy =

(13)

steps.
1) A distributed computation is employed, at the end of whedch site ha(s(ai; +bi;), iy)
1 <p<kand((a; +b;-),i,): 1<p<k.
2) Each site, forl < p < k, computesij according to Equation (13) and outpuf@u; +
bic)?,i5) : 1 <p < k.
The second step requires no communication, so all that ramaito develop a distributed
algorithm for the DSTK probler.

The DSTK algorithm proceeds in rounds and its basic workiugsfairly simple. (i) At the
beginning of each round, each site computes its iogata values and sends their associated
indices to the other site. (ii) Each site checks whether titkces it received are the exactly
same (respecting ordering) as the ones it sent. If so, btek ®@rminate. Otherwise, (iii) both
sites exchange data values for the indices received. #ir(@l) both sites, for each data value
sent or received in the previous step (say with indexupdate their’” data value td“%’”’ The
sites proceed on to the next round.

The above scheme will work, but may send redundant mess@gee. a data value has been
updated in step (iv), its value will be identical at both sind will never change again (even
if another update is applied). Hence, these values needenseélfit in future invocations of step
(ii). To achieve this, both sites keep a copy @f a list of indices of data values that have

been updated. Indices that appearndmneed not have their data values sent during step (iii).

®This algorithm can then be applied again with having—ay, . .., —a, and Sz having—by, ..., —b, to compute((a,- +
p
bi;),z;> :1<p<k.
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(However, the same argument does not carry over to senddiges in (i), there it is essential
that repeated index transmission be allowed.)
The DSTK algorithm pseudo-code can be seen in AlgorithmA/Il- Its not difficult to show

that, due to symmetry, the copies@fheld at each site will always be identical.

Algorithm VI1-A.1 DSTK Algorithm
0. S, sets its copy ot/ to () and Sy sets its copy oi/ to (.

1. S, selects the: largest amongu,, ..., a,. Let their indices be denoteij*, 1 <5<k
Sa sends(i;4 : 1 < j <k).In parallel,S; selects the: largest amongy, ..., b, and sends
(i% 11 < j <k).[8k bytes]
2. Both sites check Wheth@f = z’f forall 1 <j <k. If so,

2a. for each!! ¢ U, the sites exchange thefi!)”" data valug < 8k bytes]

2b. each site output§a;a + b;a), i, ((a + bi?),z’£> and terminates.
3. Otherwise, the following actions are take$y sends(ai;; 1 <5< k;,z’j‘ ¢ U) and
(am 1<) < k,i% ¢ U). In parallel,Sg sends(bz : 1 < j < k,if ¢ U) and (bia 1 1<j <
kit ¢ U). [< 16k bytes]
4. Both sites, for each,i” ¢ U/ update their(i!)" and (i?)" data values toﬁ and

(IB-‘,-bB

i 5 4. add/ to their copy ofi{, and goto step 1.

We illustrate the DSTK algorithm with the following example

Example 2: AssumeS, and S have data values as depicted in Table IV. ket 2 i.e. we

are interested in finding the indices of the top two among el trow.

. (Round 1:)S,4 sends indiceg101, 100); S sends indicegl, 2). Since these indices do not
match, S, replies with data value§200, 199) and (100, 101); Sg replies with data values
(300, 298) and (203, 202) (note that, due to ordering, the sites can match up the détas/a
received with their correct index). Both sites update tHéir 27, 100", and 101** data
values resulting in Table V. Both sites add2, 100, 101 to their copy ofi/.

« (Round 2:)S, sends indiceg101,100); Sp sends indiceg101, 100). Since there are no
mismatchesi(e. the first sent each site match as do the seconds), then beghtsrminate

each outputting data value/index pajt93, 101) and(401, 100) as the final (correct) answer.

Note that the total communication cost divided by the coghefcentralization technique 3%%
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1 2 3 -~ 99 100 101

Sa 100 101 102 --- 198 199 200

SB 300 298 296 --- 104 202 203

Sa+Sp | 400 399 398 ... 302 401 403
TABLE IV

ORIGINAL DATA VALUES

1 2 3 - 99 100 101
Sa 200 1995 102 --- 198 200.5 201.5
SB 200 1995 296 --- 104 2005 201.5
Sa+Sp | 400 399 398 ... 302 401 403
TABLE V

DATA VALUES AT THE END OF ROUND 1.

A substantial communications savings has been gained.
O

Correctness ProofNow we prove that the DSTK algorithm is correct. First we shbat it
always terminates. Suppose the algorithm is at the stahteofri+ 1)* round. During step 1 of
each of the previous rounds, at least one index selegtedr Sz will not be ini/; otherwise,
S4 and z would have selected exactly the same indices and termifferefore at least one
index was added to&f in each of the previous rounds. Since indices are never removed from
U once added, then at the start of the+ 1)** round,# will contain the indices for all data
values. Thus, during step 5,4 and g will select exactly the same indices and terminate.

Now we show that the indices outputted upon terminationl(< j < k) are correctj.e. i*j
is the index of thej®" largest amonga; + b:), ..., (a, + b,). Letay, ..., a, andby, ..., b,
denote the data values held By and Sy at the start of the termination round. These may not
be the same as the original data values because some maydaveidated during a previous
round. However, it can easily be shown that for edck ¢ < n, one of the following two
statements holds: (i), equalsa, andb, equalsby; or (i) a, andb, equal %, Thus (a, + by)
= (a¢+be). Therefore, it suffices to show that;- +I§Z-J*_) is the j™ largest amonda, + b ), . . .,

(Gn + En). But this is obvious since, by definitioﬁ,-;_ and Ei; are thej'" largest among, . . .,

0Because the data values with indiceddrare the same across sités, for any £ € U, the ¢! data value for bott54 and

Sp is b
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~

a, andby, ..., b,, respectively.

Communication Complexitysince our algorithm for the DSSTK problem requires two appli
cations of the DSTK algorithm, its total number of bytes commicated is at most6k + 48kp,
wherep is the larger number of iterations carried out between the d@yplications. Dividing

this by the cost of the centralization technique, we get

16k +48kp _ 4k 12K

14
4n n n (14)

Thus if p << {2 — 3, then a large communication savings is gained.

Synchronization CostEach iteration of the DSTK algorithm requires two synchrations
between sites. The two applications of DSTK can be combinedl hat an iteration from each
is carried out using the same two synchronizations (comaatioin cost is unaffected). Hence
the total number of synchronizations carried out in solMIGSTK is p.

In some circumstances, reducingis worthwhile, even at the expense of greater overall
communication. A simple strategy for achieving this is towéna@ach site in step 1 of DSTK
send its top[ak| indices ¢ > 1). Then, in steps 3 and 4, the sites will exchange their data
values and update glkk]| indices. However, step 2, remains unchanged, only thé: tolices
are compared (otherwise the algorithm will unnecessanlyesthe top[ak| problem). The
communication cost per round (ignoring the terminationndjuincreases by a factor &fﬁ—k’”

~ «. But, the extra information exchanged should reduce the tatimber of rounds executed.

We would expect, in many cases, the reduction factor to bpgtional to(o;q—’ﬂ ~ .

VIII. CASE STUDIES: FINDING GALACTIC FUNDAMENTAL PLANES AND OUTLIERS

The identification of correlations among astrophysicalperties has lead to important dis-
coveries in astronomy. For example, the class of ellipteoal spiral galaxies have been found
to occupy a two dimensional space inside a three dimensgpate of observed parameters
(radius, mean surface brightness and velocity dispersiah¢d theFundamental Pland[54],
[55]). This motivates research for finding similar corredas among other attributes in hetero-
geneously distributed sky surveys. Also, examination aiflasst of the parameter space can also
help astronomers identify objects with atypical behavi@,[3]). It is therefore important to
systematically explore the observable parameter spadespacifically search for rare, unusual,

or previously unknown types of astronomical objects andhpheena.
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We perform two case studies using a virtual catalogs formedrbss-matching data from
the Sloan Digital Sky Survey (SDSS) [46] and the Two Micror 8ky Survey (2MASS)[47].
This dataset is described in Section VIII-A. The first caselgtevaluates our distributed PCA
algorithms for identifying fundamental galactic planessisl described in Section VIII-B. The
second case study evaluates our distributed outlier deteetigorithm for finding outlying
galaxies with respect to the “correlation structure” amdmg attributes in the virtual catalog. It

is described in Section VIII-C.

A. Dataset

We perform experiments on a 13022 record real dataset-aimelamental Plane Datasett
serves as a virtual catalog on which we employ our distribtkyorithms. However, for the
purposes of our study, a real distributed environment isneaessary. Thus, for simplicity, we
used a single machine and a simulated distributed envirohme

Fundamental Plane Dataset: Using the web interfaces of 2MAS$Sand SDS&, and the
SDSS object cross id tool, we obtained an aggregate datas®ving attributes from 2MASS
and SDSS lying in the sky region between right ascension (Es®)and 200, declination (DEC)
0 and 15. The aggregated dataset had the following attsbinten SDSS: Petrosian | band
angular effective radiudder), redshift ¢s), and velocity dispersiorv();'2 and had the following
attribute from 2MASS: K band mean surface brightnégsgh).'* The dataset had a 13022 tuples
with four attributes. We produced a new attribute, logamitRetrosian | band effective radius
(log(ler)), as log(laer*rs) and a new attribute, logarithm velocitgpersion log(vd)), by applying
the logarithm to vd. We dropped all attributes except thaseltain the three attribute dataset,

log(ler), log(vd), Kmsb.

http:/firsa.ipac.caltech.edu/applications/Gator/

2http://cas.sdss.org/astro/en/tools/crossid/uplead.a

BpetroRad_i (galaxy view), z (SpecObj view) and velDisp (SpecObj view)SDSS DR4

Yk mnsurfb eff in the  extended source catalog in the Al Sky Data Release,

http://www.ipac.caltech.edu/2mass/releases/alls&ek.html
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B. Case Study: Finding Galactic Fundamental Planes

This case study aims to identify to what extent the galaxegsasented in the two datasets
can be thought to reside on a fundamental plane. This amdardstermining the percentage
of variance captured by the first two principal componentsthBof distributed PCA algorithms
have a parameter allowing us to specify exactly how much comeation they require. For each
value of this parameter on each dataset, we employ eachithlgot00 times computing the
percentage of variance captured by the first two PCs. We tregperages and 0.95 confidence
intervals (error bars).

We compare the distributed algorithms against the cen#ti@din technique which simply sends
all the data to a single location and performs PCA there. Inexyperiments, we measure the
accuracy of the distributed algorithms as a function of theant of communication they require.

Communication required is measured as a percentage:

Bytes required by distributed algo
Bytes required by centralization technique
The communication percentage of the random projectiondodistributed PCA algorithmRand-

Communication Percentage: 100

Proj) is 100 times Equation (8). The communication percentagthefuniform sampling dis-
tributed PCA algorithm YnifSamyp) is 100 times Equation (9).

Figure 2 shows the communication costs versus accuracy nfif®aj and UnifSamp on
the fundamental plane dataset. As can be seen, UnifSamgyctasperforms RandProj. At
low communication percentages, UnifSamp produces regelits close to the centralized. Take
note that RandProj does approach the centralized reswks ¢arge enough communication. It
is surprising that it initially moves away from the centeald results. We cannot explain this
observation.

Based on these results, it would seem that using UnifSamptimate the covariance matrix
for outlier detection would be better than RandProj. Howesice outlier detection is based on
the PCs and not the variances captured, it is not entirefyr erich covariance matrix estimation

is preferred. In the next subsection we directly examing i$sue.

C. Case Study: Finding PCA Based Outlying Galaxies

This case study aims to identify the tdpoutlying galaxies with respect to the PCA-based

outlier scored; , described earlier. The centralized technique first coespthe third principal
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Fig. 2. Communication percentage vs. the percentage ohneei captured by the first two PCs on the fundamental plane
dataset. “Centralized” refers to the percentage of vadaraptured by the first two PCs using the centralized tecleniqu

direction (both our datasets have three attributes). Teemputesi; for each data record and
returns the togc along with their score. On each dataset, we compare theemitieported with
those reported by our distributed outlier detection teghaiusing UnifSamp in the PCA phase.
As before, for each parameter setting, we repeat the odgisction algorithm 100 times. There
are two questions to address before describing our residis: do we measure communication
percentage? How do we measure accuracy?

Measuring communication percentage and accuratile communication cost of the dis-
tributed outlier detection algorithm is the cost of the oni sampling PCA phase plus the cost
of the DSSTK phase. Thus, the communication percentagessuif@ng a virtual catalog with

n records andn attributes)

(4pnm + 4) + (16k + 48kp)
dmn

Ak 12kp

1
100 }:100{p+—+—+
nm

(15)
mn  mn
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Accuracy is more difficult to measure. Let, ... s, be true outlier scores of the records,
i.e. the scores computed by the centralized technique, writteshescending order. Le, .. .,

S, denote their corresponding scores if estimated using tiferam sampling based distributed

PCA algorithm. Let%p be the index of the' largest among, ..., 5,. Ultimately, we would
like to quantify the extent to which the records,, ..., r; , form a good approximation to the
true topk records,ry, ..., 1.

Faganet al. [56] discuss the problem of defining measures for companwy top £ lists.
One of the measures they consider is a generalization of dsithu from statistics. Adopting
notation similar to theirs, leD denote the set of true top records{ry, ..., 7}; let D denote
the set of estimated top records{r; , ..., r; }; let = denote|D N D|; and let? denote the set
of all size two subsets ofD U D). For each paifr;, ;} in P, let K (i, j) denote the “penalty”
assigned to this pair. If the true and estimated kolists are inconsistent with respect to this
pair, then the penalty is set to one, otherwise zero. Thremtgins are deemed to cause an

inconsistency.

1) r; andr; appear in both tog: lists. Moreover, the records appear in different orders in
the two lists.r; comes before; in true topk list but comes after in the estimated tép
list; or, r; comes after; in true topk list but comes before in the estimated tbpist.

2) r; andr; both appear in one of the top lists and exactly one of the records (say
appears in the other list. Moreover,comes after; in the list in which they both appear.

3) r; andr; each appear in exactly one of the lists and both do not appeifuei same list.

The final, unnormalized measure is defined to be the sum ofehalfes®

> EK(,j).
{7‘7;,7’]'}673
Following from Lemma 3.1 in [56], this sum is tightly bound&dm above by(k — 2)(k + 2) +

z(z—1)

R Hence, the final, normalized measur&is

Denoted K (1, 72) in [56].
8In our prior work [45] we used a similar, but more ad-hoc, nueasbecause we were unaware of [56]. However, we drop

that measure here in favor of Krus.
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Ti,Tj K 7’7=7
Krus = Z{ i73}EP ( )1 . (16)
(k—2)(k + 2) + 251

We use this as one measure of accuracy in our experimentse¢oywe feel the measure

has weaknesses related to the fact that it does not take ¢otmuat the actual outlier scores,
only the topk records themselves. Hence there are situations where Kres galue very close
to one (indicating poor estimation), but a plausible argoihoan be made that the estimation is
actually decent.

Example 3:Supposes; — sq, < € and the estimated top records arery.q, ..., ro, I.€.
i1 =k+1, ..., 4 = 2k. In this case, Krus returns omegardlessof the value ofe. However,
whene is very close to zero, it seems intuitive that anyecords out ofy, .. ., ro, are a decent
top k since they all have nearly the same outlier score. O

We would like to use an accuracy measure that takes into at¢ba actual outlier scores.
However, to our knowledge, no such measure for comparingstbgts has been developed in
the literature. Therefore, we develop one of our own. Sineeave assuming a true tdp we
consider only records; (1 < j < k) and develop a penalty for its estima’q;. We choose not
to assign a penalty to all pairs as Fagdral. do, because they were interested in comparing to
top £ lists without assuming one was the true answer.

We also do not consider the order in which the truek@ppeari.e., if r1,...r, andr; , ... N
differ only in the order in which the records appear, then \wsuae no error has occurréd.
With this in mind, the penalty for estimating as Tio denotedR;, is zero ifr;j is among the
true topk, i.e, Si, = Sk Otherwise, the penalty is amount by which the outlier sam‘r@;j
would need be increased to be in the true tgp.e., s, — S+ Formally stated, the penalty is
defined as

R, - 0 if S, > Sk a7
Sk — 8, otherwise
An overall, unnormalized accuracy metric, is

> R;. (18)

"We make this assumption to simplify normalization.
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Observe that, fore very close to zero in Example 3, (18) is very close to zero,chiag
our intuition. Finally, to improve interpret-ability, weommalize (18). Under the assumption
that s, > s,_r+1 (which holds in all experiments we run), (18) is bounded ttiglabove by
Zg‘.‘:l(sk — sn—j+1). Hence, the normalized accuracy measure we use, and retey Quitlier
Score Error (OSE)is
OSE = — S By . (19)
Zj:1($k: — Sn—j+1)

In our experiments we used both accuracy measures Krus akd OS

Experimental resultsFigure 3 shows the results using the both accuracy measnde& a-
5, 10, 50.

UnifSamp clearly outperforms RandProj with respect to lamtturacy measures and all values
of K. Moreover, RandProj appears to level-off at a non-zero (@stheases, significantly large)
degree of error. This observation is consistent with thaltesn the previous case study. Beyond
this however, we cannot explain this surprising obserwmatio

UnifSamp will result in zero error once 100 percent commatan is reached since the
sampling is done without replacement. The rate of convergaa much faster with respect
to the OSE measure. We believe this is due to Krus presentingvarly pessimistic view
by not taking into account the actual outlier scores (onky top & records themselves). As
such, there are situations where Krus gives value very ¢msme (indicating poor estimation),
but a plausible argument can be made that the estimationtuslBcdecent (see Example 3).
OSE, on the other hand, takes into account the actual ostieres, and it shows that, at low

communication percentages, UnifSamp produces resuljsclese to the centralized.

IX. CONCLUSIONS

The challenges of scientific data analysis within the asmon community are growing ever
more difficult. This is primarily a result of rapidly growindata volumes from a growing
number of specialty missions (e.g., wavelength-specifacspobservatories in Astronomy; or
helio/geolocation-specific plasma sensing instrumentsSpace Physics; or domain-specific
remote sensing instruments for Earth System Science). dvatiysis for these multiple missions

is growing in complexity and difficulty for several reasorfa) the data are often distributed
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Fig. 3. Communication percentage vs. Krus accuracy: Kruasome (left column), OSE measure (right column). The rows

from top to bottom depict results with” = 5, 10, 50.

across different science data centers (e.g., the distdbBcience Archive Research Centers,
SARCs, for Astronomy); (b) science instruments, their dgthering modes, and their data
products are becoming increasingly complex; and (c) the datumes are growing rapidly.
Hence, the greatest challenge to reaping the maximum gaidyenefit from this wealth of data
is to developdistributeddata mining algorithms.

In this paper, we described a system for the Distributed &pilon of Massive Astronomical
Catalogs (DEMAQC). It is built on top of the existing U.S. Natal Virtual Observatory envi-
ronment and provides tools for data mining (as web serviegi$jout requiring datasets to be

down-loaded to a centralized server. In order to test thetfomality of the system, we developed
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algorithms for distributed PCA. Using the approximate P®s, designed a communication-
efficient distributed algorithm for outlier detection. Warged out two case studies for estimating
principal components and outliers in the Fundamental PlaEnastronomical parameters. We
envision DEMAC to increase the ease with which large, geugcally distributed astronomy
catalogs are explored and astronomers can better tap tiesraf distributed virtual sky survey

catalogs.
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Distributed Linear Programming and Resource Management fo Data Mining in
Distributed Environments

Submitted for Blind Review

Abstract (BMDS) designed by the Missle Defense Agehcysuch
a system is fundamentally distributed, near real time and
should have the capability to manage, correlate and assess
Advances in computing and communication has resultedinformation obtained from advanced sensors, lasers, com-

in very large scale distributed environments in recentgiear mand and control devices and battle management and plan-
They are capable of storing large volumes of data and oftenning. Such decentralized applications are faced with the
have multiple compute nodes. However, the inherent het-critical and challenging problem of resource and data man-
erogeneity of data components, the dynamic nature of dis-agement. This problem can be posed as a linear optimiza-
tributed systems, the need for information synchroniratio tion problem [1]. In such distributed applications, it isspo
and data fusion over a network and security and access consible to either transfer data to a central site and then do the
trol issues makes the problem of resource management andnining or to build local distributed models. A decision must
monitoring a tremendous challenge. In particular, central be made regarding the optimal mechanism of data transfer
ized algorithms for management of resources and data mayn the network such that the best balance between commu-
not be sufficient to manage complex distributed systems. Innication cost and accuracy is attained. However, finding a
this paper, we present a distributed algorithm for resourcecentralizedsite willing to solve this optimization problem
and data management which builds on the traditional sim-may be difficult due to security and access control issues in
plex algorithm used for solving linear optimization prob- the network. For instance, in the BMDS system, modular
lems. Our distributed algorithm is an exact one meaning its designs of monitoring the architecture are encourageesinc
results are identical if run in a centralized setting. We-pro security of individual components is as critical as theestat
vide extensive analytical results and experiments on simu-of these components collectively across the BMDS. In this
lated data to demonstrate the performance of our algorithm paper, we present a distributed strategy for solving the lin
ear optimization problem which is very useful for resource
management in DDM applications.

This paper is organized as follows: Section 2 describes

Linear programs with constraints have been used exten-related work; Section 3 reviews a popular methodology for

. . - S . solving linear programs namely the Simplex Algorithm;
sively in data mining applications. For example, in Support . . . .
Vector Machines (SVMs) with expert knowledge [24] a lin- Section 4 outlines the model of the distributed data min-

. . ing environment we are considering; Section 5 describes
ear program is formulated such that the constraints COMe~y = Distributed Simplex Alaorithm and Section 6 presents
spond to prior knowledge. Such systems are cdtlaalvl- P 9 b

. . empirical results on simulated data. Finally, Section 7-con
edge based linear progranad can often end up with an cludes the paper and discusses future work in the area
infinite number of constraints, resulting in a semi-infinite pap '

linear program [23]. However, Mangasarianal. estab-
lished that the these semi-infinite linear programs and lin-
ear programs with equilibrium constraints can be solved as
single linear programswith a finite number of constraints,
thus leading to a simple linear programming formulation.
Although, this is a relatively new area of research, several
other real world applications can be modeled as knowledge
based linear or convex programs.

Consider for example, a real time command and con-
trol system such as the Ballistic Missile Defense System  hitp://www.mda.mil/mdalink/html/mdalink.htm|

1. Introduction

2 Related Work

This section presents a brief overview of resource dis-
covery in distributed environments and some well known
optimization techniques.




2.1 Resource Discovery in distributed en- 3 A Review of the Simplex Algorithm
vironments

Mathematically, the linear optimization problem [2] can

be stated as follows (using vector notation):
In recent years, a lot of research has been done onre- Findz, > 0,20 > 0,---,2,, > 0 and the minimum

source discovery in distributed environments. lamnitthi e yajue (z) of the objective function:

al [9] state that the two resource sharing environments that

are of particular interest to user communities are grids and C1Z1 + oy + -+ - + Cnn (1)
peer-to-peer (P2P) systems. They refer to the four main

components of a resource discovery solution as membershigatisfying the constraints:

protocol, overlay construction function, preprocessing a

local or remote request processing. Matchmaking [10] and Az + Ao + -+ Apz, = B (2)
distributed cycle sharing [11] are two other distributed re

source management mechanisms. Our work differs from all Z;? 2;
the above in that our objective is to design a distributed op-whereA; = _J andB =
timization technique for efficient management of data trans ' : :
fers. A j b,

For the maximization problem, the negative of the objec-
tive function can be minimized. The xn linear system de-
2.2 Optimization Techniques fines the constraints on the objective function i.e. each row
of the matrix A defines a constraint on n variables. More-
over, the constraints and objective function can be repre-
One of the most popular algorithms for linear program- sented by &simplex tableau” (terminology adapted from
ming is the simplex algorithm [2]. We discuss Dantzig's al- the optimization literature). The Table 1 gives an illustra
gorithm in detail in section 3. However, this is not the only tion.
way to solve a linear program. The main competitors are

a group of methods known as interior point methods ([12] an a2 oo aip | by
and the references therein). These algorithms have been in- Az az o Gz | b
spired by Karmarkar's algorithm [13]. As opposed to the AR
simplex method, interior point methods reach the optimal Uml  Gm2 - Gmn | bm
vertex by traversing the interior of the feasible regionm&o €1 c2 o Cp z

interior point methods have polynomial worst case running

times, which are less than the exponential worst case run-
ning time of the simplex method. On average, however, the
simplex method is competitive with these methods.

Table 1. Simplex Tableau

. . ] A Basic Solutionto the linear optimization problem is
Several other parallel implementations of the linear op- yptained by setting — m variables equal to zero and solv-
timization algorithms exist [14, 15, 16, 17]. Stunkel and ing the resultingn x m linear system of equations. In a
Reed [16] consider two different approaches of paralleliza pgjc solution, the n - m variables at zero are cafied-
tion of the constraint matrices on the hypercube: (1) Col- pasjcyariables, while the remaining m variables are called
umn partitioned simplex and (2) Row partitioned simplex. psic variables If all of the basic variables take non nega-
Column partitioned simplex have been studied further in tye yalues, then the basic solution is calleBasic Feasible
work done by Yarmish [14]. Their parallel algorithm di-  goytion(BFS).
vides the columns of the constraint matrix among many A fundamental theorem in linear programming concerns
processors. Ho and Sundaraj [17] compare the problemyq epjacement of a linear system, if possible, by the equiv
of distributed computation of the simplex method using gientcanonicalsystem. This allows one to identify BFS's,
two different methods: (1) Distributed Reinversion (DINV) 514 to move from one BES's to another easily through a
and (2) Distributing Pricing (DPRI). Eckstein et. al. [19] “pivot operation”. Quoting [2]: “Acanonicalsystem with
present parallel implementations of the simplex algorithm 5, ordered subset of variables, callEsicis a system such
using computational devices called “stripe arrays”whe&h r  hat for each i. the'" basic variable has a unit coefficient
semble temporary data structures used in some routines of, theth equation and has zero coefficients elsewhere.” To
Connection Machine Scientific Software Library, CMSSL.  jgentify the BFS from a canonical form, all of the non-basic
In the following section we present a review of the Sim- variables are set to zero and values for the basic variables
plex Algorithm. are simply read-off. The simplex algorithm decreases the



value of the objective function at each iteration by sefegti

a basic variable and replacing the corresponding of column

of matrix A with another column.

In most practical linear programming problems, the

equationdz = b takes the form of an inequality. In order to
transform these inequalities into equations, additioaaitv
ables are introduced as follows: (1) ¥7_, a;;z; < b;

a slack variable is introduced:Z?:1 ai;T; + 85 = b;.
(2) If 3°7_, aijz; > b; asurplusvariable and ararti-
ficial variable are added:Z;.‘:1 ai;x; — 8 +r; = by
3) If Z?Zlaija:j = b; an artificial variable is added:
> i—1 aijzj + i = by It must be noted that that artifi-

cial variables must be zero when the optimum is reached;
however this is not required of slack and surplus variables.

Itis required for the simplex algorithm that m of the vec-
tors A; be independent. Led; , A;,, ---, A;,, be such a
set of independent vectors forming a basis P i.e.

P = [AjlvAjzv"' aAjm]

A canonical system can be obtained by multiplying equa-

tion2 by P! i.e.

(P71A1)£C1 + (PilAg)xQ + (PilAg)x3
4+ (PrA)2, = (PTIB)
or, R R R X
Az + Ao + - -+ Apxy, = B (4)
whered; = P~'A;andB = P~'B. NotethatP~'P = I
andAAji, = U; whereU; is a unit vector with unity in compo-

(c1—vA1)z1+(ca—vAz) o+ +(cn—7vAn)zn = (2—7B)
(8)

(9)

Or, 11 + Gy + - - + Cnn = (2 — YB)
Also,
(Cl — ’}/PilAl)ZCl —+ (CQ — ’7P71A2)I2
+eo 4 (en —yP ' Ay = (2 —yP7'B)

which implies,
(Cl - 7TA1).T1 + (Cg — 7TA2).T2
+--+ (en — ALz, = (2 — TB)

wherer = yP~!andé; = ¢; — yA,. Itcan be clearly seen
that, the relative costs are obtained by subtracting fepm
a weighted sum of the coefficienis;, az;, - - - , am;. Also,
the weightsry, 7o, - - - , m,,, are the components of and
can be assumed to be equal for all j. Each of theare
referred to as theimplex multipliers

Since,
T = ~P7!
Multiplying by P givestP = ~
onm(Pj,, iy, Fj.) = (Ci1sClas 5 Chi)
HencenP;, = cj

The basic solution is optimal if; > 0. If notall ¢; > 0

nent i and zero elsewhere. Since equation 4 is in canonicathen an improved solution can be obtained by choosing

form with basic variables;, , z;,, - -, z;, the basic solu-

tion may be obtained by setting non-basic variables to 0.

Hence,
Lj;
T
l=p'B (5)

Ty

The basic solution is feasible B > 0 (This implicitly
means that each component Bfis greater than or equal
to 0. The next step is to eliminate theg,’s from the equa-
tion 1 producing theelative cost factors;. Let us definey
as in equation 6.

Y= [le yCjigy Tt acjm] (6)
Multiplying equation 4 byy yeilds the following:
(VAD 1 + (YA2)s + -+ (YA)za = (vB) (7

Note that'ij =~U; = ¢;, so that equation 7 has the same

such that

és = Min & (10)
The corresponding column of the A matrix is referred to as
the pivot column Next a column must be chosen to leave
the basis such that replacing it with the entering basis col-
umn still ensures that the criteria for basic feasible sofut

b1
still holds. Recall that?3 = P~'B andB = | b2 | and
.
ais
. a2 ) )
P, = In order to guarantee that a new basic feasi-
Ams

ble solution will be reached we do the following:

. . . b;
Find row i that minimizes—-
Ais

(11)

This rows is referred to as thpivot row.
This completes one iteration of the simplex algorithm.

coefficients for the basic variables as equation 1. Elimina- Next, we discuss the computational cost of the Simplex al-

tion of basic variables results in the following equations:

gorithm.



3.1 Computational Complexity

The performance of the simplex method is usually mea-
sured in terms of the number of pivots required to solve
the linear programming problem [3]. Theoretically, an up-
per bound on the number of pivots was first obtained by
Dantzig [2] where he showed that for anx n Linear Pro-
gramming problem, there are at mcﬁgt) bases and hence
this is the maximum number of pivots. BL(t:l) is a very 300 GB 300 GB
large number. Whem = 2m for example, it grows as

22711, n m . . . .
Vrm > (% — 1)™ which 'S, exponential in m_forr% > 2. Figure 1. An example of data and bandwidth
This has been further studied by Klee and Minty [5]. distribution in a DDM application

We stress that our objective here is not to perform a com-
prehensive study of the complexitpf the simplex algo-
rithm — rather we use this to illustrate how a distributed Node| v
optimization algorithm can be designed effectively. In the 1 1.23
following section we describe the structure of a distrilute 2 2.23

3
4
5

data mining application and formulate the linear optimiza- 294
tion problem we are interested in solving. 1.78

4.02

4 The Distributed Data Model
Table 2. v values for the network shown on

The DDM application can be conceptualized as a Flgurel
weighted graph G = (V, E) where V represents the node
set and E the edge set that connect pairs of nodes. For our
purposes, the graph is assumed to be undirected and has
a fixed topology. We also assume that communication be-the fact that the compute element of each node can process
tween nodes is completely reliable. at mosts; amount of data. Next, we illustrate our optimiza-
Formally, we assume that there arelifferent nodes in  tion problem with an example:
the network. Each node has a dataBetresiding on it.
The cost of processing data at #i& node into a data min-  Example 1 Consider the network shown in the Figure 1.
ing model isv; per record. The cost of moving the data The weights on the edges represent the cost of moving the
from node; to its neighbor nodg in the network is;; per data from node to its neighbor nodg i.e. y;; dollars per
record. Let, (1)r;; be the amourttof dataD; transferred  record. The values d¥; for each node are also indicated in
from node i to node j for processing i.e.< z;; < D;. (2) the figure, for e.g.0; = 300, o = 600 etc. Assume that
X = [xij]zjzl be the matrix containing all the data trans- thew values for each node are as indicated in the Table 2.
fersin the network and is referred to asteategy{1]. (3) 6; Thus for the Figure 1 the following objective function can
be the amount of data that can be processed by theom- be written:
pute node at the current time t. Note that as more and more
jobs are processed, the valuedfchanges and is always z = 6.03x12 + 9.04w23 4 6.5215 + 8.28x14 +

less than the total amount of data that can be processed at a 14.42x95 + 9.58x34 + 12.32145
node. The overall cost function for building the data mining
model for a strategyX can be obtained as follows: where z is an user defined cost. The corresponding con-

straints for this objective function are as follows:
C(X) = Zﬂijxi]‘ +vx = Z cijri;  (12) Z12 + 214 + 215 < 300, 12 + @25 + w23 < 600, x15 +
ij Tos5 4+ 45 < 300, 14 + 34 + 245 < 300, 223 + 234 < 300,
0 < 212 < D1, 0 < w23 < D2, 0 < w5 < Dy,
0 < 214 < D1, 0 < w35 < D2, 0 < w34 < Ds,
0 < z45 < D4 Note that in addition to the above men-

ij
wherec;; = pi; + v;. The constraints for the optimization
problem described by the above equation are derived from

?An interested reader is referred to [3] for a detailed survey tioned constraints, nodes may have other local constraints

SNote that data may be either homogeneously or heterogepguars developed amongst themselves. For e g Nodes 1. 2 and 5
titioned and this does not affect our analysis. ’ I !

4This can be expressed as a percentage or total number odisetcans- may agree that amount of data transferred from Node 5 to

ferred Node 2 is twice sum of data transferred from Node 1 to 2



Xy, + X35 +X;, <= 300 X,pF Xpg +Xp <= 600 having to centralize all the constraints. In order to do so,
Xy, +2 X5 = X5 =0 O note that each node in the network needs to have access to
300 GB 600 GB the number of basic variables that it should add. This in-
« +x_ <= 3fgrmation depends on the total number of constraints in the
B system. So each node needs to know exactly how many con-
straints are there in the system at any given point of time.
To do so, we propose the following converge cast based ap-
300 GB proach: Lets be an initiator node which builds a minimum
spanning tree on all nodes in the network. Following this, a
message is sent byto all its neighbors asking how many

' 300 GB ; . ny
X X <_3380GB local constraints each node has. A neighbor on receiving
5By 2o X4t X5 <= 300 this message, either forwards it to its neighbors (if theee a
25 15 45

any) or sends back a reply. At the end of this procedure,
Node s has the correct value of the total number of con-
straints in the system, s&Yy.

Next, Nodes sets a variableount — Constraint to the
number of its local constraints. It traverses the minimum
and from Node 1 to 5. This constraint may be written as SPanning tree and informs each node visited of the num-
Tos = 2719 + 2715. ber of constraints seen so far. LEtrepresent the value of

count — Constraint at node;. Then node must addl.

If the linear programming problem described above is basic variables to each of its constraints. At the end of this
fully constrained it can be solved by direct or iterativetec  procedure, all nodes have added the relevant basic vesiable
nigues. However, if the system isader constrainedthe Note that this procedure creates exactly the same canonical
solution approaches are different. Historically simpleki-o form as would have been obtained if all the constraints were
mization [2] has been used to solve under constrained linearcentralized. It must be noted that the Distributed Candnica

Figure 2. The Distributed LP Problem

systems. Representation algorithm needs to be run only once at the
time of initialization. Thereafter, each node just updates

5 Distributed Simplex Algorithm tableau depending on the pivots chosen at that round of it-
eration.

Once each of the nodes have the canonical representa-
tion, we are ready to describe the distributed simplex op-
timization algorithm. We assume that nodes maintain only
their local simplex tableau and the global objective funrtti
The goal is to obtain a solution to the global optimization
problem.

In this section, we describe the distributed simplex algo-
rithm. We first give a description of a method for obtaining
the canonical representation of a linear system and then pro
vide details of the algorithm.

5.1 Distributed Canonical Representation
of the Linear System
5.2 Notation and Preliminaries
Consider the network described in Example 1. Instead
of all the constraints being seen at a centralized site, let Let Py, P», - - - P, be a set of nodes connected to one an-

Node 1 observe only2 + 14 + 215 < 300, Node 2: other via an underlying communication tree such that each
T1o + Tz + 25 < 600, Node 3:z93 + z34 < 300, Node nodeP; knows its neighbor#v;. Each nodeP; has its own
4: x34 + z45 < 300, Node 5: z15 + w25 + a5 < 300. local constraints which may change from time to time de-

In addition let us assume that the following three local con- pending on the resources available at that node. The con-
straints are also observed at Nodes 1, 2 and 5 respectivelystraints at node have the formA X¢ = b* where A’ rep-

T12+2T15 = To5, 2To5 = T12+To3 ANdres — 2215 —Tas = resents ann x n matrix, X* is an x 1 vector anddb’ is
0. Each site still observes the entire objective function, am x 1 vector. Thus at each node, we are interested in
namely: z = 6.03z12 + 9.04xo3 + 6.52215 + 8.28x14 + solving the following linear programming problem: Find

14.42x95 + 9.58x34 + 12.32x45. Figure 2 illustrates the  X* > 0 and Minz? satisfyingc,z + caza + - - - cpn, = 2
problem. If all the constraints could have been centralized subject to the constraintd’X? = b’. The global linear
the canonical representation would be relatively simple to program (if all the constraint matrices could be centraljze
obtain. can be written as follows: Find > 0 and Minz satisfying

Our objective is to obtain the portion of the tableau cor- c¢yx1 +coxs+- - - ¢cx,, = z Subjectto constraintd X = B
responding to the local constraints at each node, withoutwhere4 = |J7_, A* andB = |J]_, b".



Local Algorithm:  Before describing our algorithm,
we first define what we mean hy-neighborhood of a
vertex, a-local query and«a, v)-local algorithm. Thex-
neighborhood of a node € V is defined as, the collec-
tion of vertices at a distance or less from it in G i.e.
To(u,V) = {v|distg(u,v) < a} where dist(u,v) de-

notes the length of the shortest path in between u and v anq
the length of a path is measured by the number of edges

in it. An a-local query by some vertexis a query whose
response can be computed using some funcfigx,, (v))
where X, (v) = {X,lv € Ty(v,V)}. An algorithm is
called(«, y)-local if it never requires computation of (&
local query such thaf > « and the total size of the re-
sponse to all suclw-local queries sent out by a peer is
bounded byy. o can be a constant or a function parameter-
ized by the size of the network whitecan be parameterized
by both the size of the network and the size of data at a node
Local algorithms can be broadly classified under two cate-
gories: (1) Exact local algorithms — Local algorithms that
offer the same result that a centralized algorithm will pro-
duce. (2) Approximate local algorithms — Local algorithms
which rely on the properties of the underlying approxima-
tion technique €.g. sampling) to provide error guarantees
on the final result and offer approximations of results.

Next, we present an exact local algorithm for solving lin-
ear optimization using the simplex method. Our assumption
is that each node contains different sets of constraints, bu
has knowledge of the global objective function.

5.3 The Algorithm

At the beginning of iteratiord, a nodeP; has its own
constraint matrix and the objective function. The column
pivot, henceforth referred to asl — pivot?, is that column
of the tableau corresponding to the most negative indicator
of e, co, -+, ¢, (Note that if no negative indicator is found,
then this is the final simplex tableau). Following this, each
node forms the row ratiosr.i, 1 < j < m) for each row
ie. it dividesbj», 1 < j < m by the corresponding number
in the pivot column of that row. Let minimum oi_‘;s be
presented asow — pivot’. This is stored in the history
table of nodeP; corresponding to iteratioh

Now the node must participate in a “local” algorithm for
determination of the minimum row ratio i.e.

Minimum (row — pivot®),i € N; (13)

We describe a simple protocol calledish-Minfor com-
puting equation . At all times t, each node maintains a min-
imum my ;. Attime t=0, m;; = row — pivot’. There-
after, each node follows the protocol given in Algorithm
5.3.1. When the protocol Push-Min terminates, each node
will have the exact value of the minimumw — pivot® in

the grid. This has been shown by Baefa al. [8] and we
merely state the theorem here for convenience of the reader.

Theorem 1 Let D be the upper bound to the diameter of
the network. Assume that Push-Min with valllds used
by the querying node for computing the MIN aggregate.
The answer of the query would be correct over all nodes
hat are constantly connected withover a path of length
at mostD.

Algorithm 5.3.1 Protocol Push-Min
1. Let{7, } be all the values sent toat roundt — 1.
2. Letmy; = min({m,}, row — pivot?)
3. Sendm; ; to all the neighbors.
4. my ; is the estimate of the minimum in step t

Once the Push-Min protocol converges, the node con-
taining the minimumrow — pivot® (say P,,;,) will send its
row in the simplex tableau to all other nodes in the network.
Next nodeP; updates its local tableau with respect to the
extra row it received from nodg&,,;,. The algorithm, Lo-
cal Constraint Sharing Protocol is described in Table 5.3.2
Completion of one round of the LCS-Protocol, ensures that
one iteration of the distributed local simplex algorithm is
over

Algorithm 5.3.2 Local Constraint Sharing Protocol (LCS-
Protocol)
1. NodeP; performs protocol Push-Min until there are
no more messages passed.
2. On convergence to the exact minimum, the minimum
row — pivot® is known to all nodes in the grid.
3. All the nodes use the row obtained in Step 2 to perform
Gauss Jordan elimination on the local tableau.
4. Atthe end of Step 3, each node locally has the updated
tableau and completes the current iteration of the simplex
algorithm.

Termination:In a termination state, two things should hap-
pen: (1) No more messages traverse in the network (2) Each
local node has all its; > 0. Thus the state of the network
can be described by information possessed by each node.
In particular, each node will have a solution to the linear
programming problem and this will be storediff. Note

that this solution converges exactly to the solution if b# t
constraints were centralized.

5.4 Observations
e The algorithm described above, will provide an exact

solution to the optimization problem as would have
happened if all constraints could have been centralized.



e It remains to be seen, via theoretical analysis and ex-Proof:
perimentation, how this resource management affects
the distributed data mining algorithm. This is beyond Let z, andxg represent the number of susceptible nodes
the scope of this research. in the network at time t antl= 0 respectively. From equa-

tion 15 we have,

o If the distributed system were dynamic with nodes .
t+1

joining and leaving on an ad-hoc basis, the constraint = 11—y
matrix for nodes currently in the network will change Tt
. . . . . Zt4+1 — ¢t . .
and so will the objective function to be solved. This = 1-— = (Using equation 17)
significantly complicates the problem and we plan to p
investigate this in future. Thus the recursive equation fay can be written as fol-
lows:,

5.5 Analysis of Protocol Push-Min

Tt
The Protocol Push-Min behaves similar to the spread of an
epidemic in a large population. Consequently our analysis ,,

is based on statistical modeling of epidemics ([6, 7]). 2o (1- P P ‘ - T

p

2

t—1 2 >

1 — 24

Z0 I I 1— J+ J
Jj=0

Definitions: A node is calledsusceptibleif it does not

have the exact minimum, but is capable of obtaining it by Now,

communication with its immediate neighbors. If a node re- T 21— 20
ceives arow — pivot value less than its current value, it lg—=lg(l - ——
becomesénfectedand willing to share this information with

other neighbors. When a node unnecessarily contacts an-  lg(1 —
other node which also has the same information, there is no
extra information gained by this communication. The node
already having the information is calledd@ador immune

node. Letz; represent the number of susceptible nodes, 21 — 2o
y: the number of infected ones andthe dead or immune < (=
nodes. Then,

T+ Yyt +2e =1 (14)

IA
|

&

s

|

&

Let 8 be theinfectionparameter defined as the proportion
of contacts between infective and susceptible per unit;time j=0 P

~ is theremovalparameter defined as the proportion of in- t=1 .
fective per unit time removed from the population. We also Hencex, = xzgexp(— Z M)
definep to be theRelative Removal Ratee. p = % As- j=0 P
suming discrete time model, the spread of the minimum

value amongst nodes can be represented by the foIIowingS‘E'D‘

difference equations:

5.6 Convergence of the Local Simplex Al-

Bop1 = Ts — Breys (15) gorithm
Yert = Yo+ BTy = v (16) We have seen in the simplex algorithm described in sec-
Zt+1 = 2t + VYt (17) tion 3, the canonical form provides an immediate criteria

) ~ for testing the optimality of a basic feasible solution.Hét
Next, we illustrate the fact that under the Protocol Push-Mi  riterion is not satisfied, another iteration of the simpaéx

the entire network is infected exponentially fast. Thi®als  gqrithm is initiated. Formally we can state the following
implies that on convergence, all nodes in the network haveinaqrem:
the same minimal value.

Theorem 2 (Dantzig, 1963)Given a linear program pre-
Lemma 1 Under the Protocol Push-Min, the number of sented in feasible canonical form, there exists a finite se-
susceptible nodes in the network decreases exponentially. quence of pivot operations each yielding a basic feasible



solution such that the final canonical form yields an opti- communication complexity is at most Qu:n)). Note that
mal basic feasible solution, or an infinite class of feasible centralization of data would require O (m n) communica-
solutions for which the values of z have no lower bound.  tion. Thus ify < % significant benefits may be obtained

from this distributed resource management algorithm.
The proof of Theorem 2 is given in Chapter 6 of [2].

|
In order to prove that théocal algorithm indeed con-
verges, we prove the following theorem:

6 Experimental Results

This section presents experimental results for the lo-
Theorem 3 Assume that the linear constraints at each node ca| algorithm for simplex optimization. We describe the

can be centralized and a feasible canonical form can be gataset, and the performance of our algorithm.
generated. If there exists a finite sequence of pivot opera-

tions each yielding a basic feasible solution such that the 6.1 Dataset

final canonical form yields an optimal basic feasible solu-
tion for the centralized scenario, then such a finite seqaenc
of pivot operations also exists for the Distributed Local al
gorithm.

The dataset at each node comprises of4hand theb?
matrices. We simulated both these matrices and added ba-
sic variables depending on the total number of constraints i
Proof: First note that if the linear constraints at each node the network as described in section 5.1. Different nodes are
were centralized and the objective function was solved us-allowed to have different number of constraints but always
ing these constraints, the Simplex Algorithm would termi- have the same number of variables kg, 2, - - - z,,. The
nate (Theorem 2). In the distributed scenario, the first stepgoal at each node was to always solve the same objective
is to generate a canonical representation of the congtraint function i.e. Minimizecyz1 + c2x2 + -+~ chz,. The cen-
at each node. This is done using the algorithm describedtralized dataset was obtained by concatenating all the con-
in section 5.1. Note that on completion of this initiation straints over all nodes in the network and the corresponding
step, both the centralized and the local algorithms have thevalues in theé* matrix.
exact same canonical representations. The local algorithm
now obtains the column pivot and row pivot. The row pivot 6.2 Performance
obtained after the Protocol Push-Min is executed yields the
minimum in the entire network. Thus this is identical 10 \ye measure the communication cost of our algorithm as
the row pivot that would be obtained in each iteration of the (q)1q\ys: | et 1, be the total number of messages passed in
cent.rallzed simplex algquthm. This |mpl|gs thatin eaeh it o, acution of Protocol Push-Min in tHe” iteration of the
eration, the same row pivot and column pivot are seen bothyorithm. Let K be the total number of iterations required
in the centralized and local algorithms. This completes the by the local simplex algorithm. Then Total Communication

EFOOf- Cost (TCC) is given as follows:

35

5.7 Communication Cost Analysis

3451 i

34k 4

The communication cost of the local distributed algo-
rithm comes from two parts: (1) The amount of communi-
cation required by the Protocol Push-Min until it converges
(2) The number of iterations for the simplex algorithm to
terminate. In the worst case, Protocol Push-Min may need
to communicate with all the nodes in the peer-to-peer grid.
This means that worst case communication cost for Push-
Min in an iteration of simplex is Or() (wheren is the total
number of nodes in the network). Also, it was discussed
in section 3.1 that in the worst case, the number of piv-
ots needed by the simplex algorithm(i§). Thus, in the Wow W W W@ W W %
worst case, the communication cost of this distributed-algo
rithm can be exponential. However, in most practical cases, Figure 3. Average Communication Cost Per
the simplex algorithm converges imn [2] iterations where Node versus Number of Nodes.

A < 4 typically. This means that for most practical cases,
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We vary the number of nodes in the network, keeping the / oL
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I

size of the constraint matrixi{) and number of variables
(n) fixed. We report the Average Communication Cost per
Node (ACCN) as follows:

Total communication cost
= =
i >
S S
T
I I

TCC

ACCN = —= (20)
n
120 q
For our experiments the size of the simplex tableau was Eat - ,,»—"”‘/
chosen to bd 01 x 301. This means thatn = 100 and 1oop . LN =T ]

n = 300. The constraint matrix was evenly split amongst o LT e T -
different number of nodes in the network. For example O sfvariages per e (%0 0
when there are 10 nodes, each node had a constraint matrix

of size10 x 300 and so on. The number of messages passed Figure 5. Total Communication Cost (TCC)
in each iteration of the simplex for computing the minimum versus Number of Variables at each node

row pivot was noted and summed up over all iterations until

the simplex algorithm terminated. The Figure 3 illustrates

our results. The more or less flat nature of the curve indi-

cates that the local algorithm scales well i.e. as the numbereaCh node in the network. The network size was 25 and

of nodes in the network increases, the average communica-50 as before, but the number of constraints at each node

tion cost per node still remains more or less constant. was kept constant at 10. Interestingly, it must be noted that
the communication occurs with the neighbors only when a

minimumrow — pivot value in the entire network has to be
determined. Note that all other pivoting operations aresdon
locally at a node. This provides a more or less flat curve

‘ even when the number of variables at a node is as large as
1000.

= - Network Size=25, n=300
300 T T T = Network Size=50, n=300

| 7 Conclusions and Future Work

150

Applications storing large quantities of distributed data
(such as astronomy sky surveys, telemedicine, e-commerce
00 . l applications) are becoming very popular in recent years.
/ ~o--oT Seeleemmeea Management of resources and data on these decentralized
applications is a challenging problem due to the inherent
50 100 150 200 250 hetrogeneity in the data, bandwidth limitations and access

el censane pernoce control restrictions imposed by the applications. In ths p
Figure 4. Total Communication Cost (TCC) per, we design an allgorithm for distribut_ed resource and
versus Number of Constraints at each node data management using the V\_/eII known smplex algorithm.
We present extensive analytical and empirical results to
demonstrate the performance of the algorithm. To the best

We also performed experiments to test the scalability of of our knowledge, this is the first work that emphasizes the
the local algorithm with regard to: (1) The number of con- need for developing large scale distributed optimizatien a
straints (m) and (2) The number of variables (n). The Figure gorithms to enhance resource management and mining on
4 shows the variation of the total communication cost ver- distributed systems. There are several directions foréutu
sus the number of constraints at each node. For this experiwork such as developing algorithms fitynamiadistributed
ment, we used two different graph topologies containing 25 mining applications, studying non-linear optimizationhe
and 50 nodes each. The number of variables used was 30@iques and different formulations of optimization probkem
at each node. In Figure 5 we examine the variation of the such as relaxing the requirement that all nodes have knowl-
total communication cost versus the number of variables atedge of the objective function.

Total Communication Cost (TCC)

50
0
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A Generic Local Algorithm for Mining Data
Streams in Large Distributed Systems

Ran Wolff, Kanishka Bhaduri, and Hillol Karguptenior Member, IEEE

Abstract— In a large network of computers or wireless sensors, fact that the data is static or rapidly changing. In the farme
each of the components (henceforth, peers) has some data abo case the periodic approach wastes resources, while onttée la
the global state of the system. Much of the system's functi@iity i might be inaccurate. The benefit of the incremental apghroa
such as message routing, information retrieval and load shing . . . .
relies on modeling the global state. We refer to the outcomefohe IS th"f‘t 'FS accuracy can -be optlmgl. Unfortunately, coming
function (e_g_’ the load experienced by each peer) as thmodel of up W|th |ncremental a|gorltth Wh|Ch are bOth accurate a.nd
the system. Since the state of the system is constantly chamg, efficient can be hard and problem specific. On the other hand,
it is necessary to keep the models up-to-date. model accuracy is usually judged according to a small number

Computing global data mining modelse.. decision trees,k- ot rather simple metrics (misclassification error, leasiasg

means clustering in large distributed systems may be very stly NN .
due to the scale of the system and due to communication Cost,error, etc.). If monitoring is done efficiently and acculpte

which may be high. The cost further increases in a dynamic then the reactive approach can be applied to many different
scenario when the data changes rapidly. In this paper we degbe data mining algorithm at low costs.
a two step approach for dealing with these costs. First, we | ocal algorithms are one of the most efficient family of
describe a highly efficient local algorithm which can be used — 4)q0rithms developed for distributed systems. Local afgors
to monitor a wide class of data mining models. Then, we . . . . . .
use this algorithm as a feedback loop for the monitoring of are in-network algorllthms. in which data is never centralize
complex functions of the data such as ité-means clustering. The bPut rather computation is performed by the peers of the
theoretical claims are corroborated with a thorough expermental network. At the heart of a local algorithm there is a data
analysis. dependent criteria dictating when nodes can avoid sending
updates to their neighbors. An algorithm is generally chlle
local if this criteria is independent with respect to the fem
of nodes in the network. Therefore, in a local algorithm, it

In sensor networks, peer-to-peer systems, grid systerds, aften happens that the overhead is independent of the size of
other large distributed systems there is often the need tte system. Primarily for this reason, local algorithmsikith
model the data that is distributed over the entire system. high scalability. The dependence on the criteria for avadi
most cases, centralizing all or some of the data is a costty send messages also makes local algorithms inherently
approach. When data is streaming and system changesiaceemental. Specifically, if the data changes in a way that
frequent, designers face a dilemma: should they update th@es not violate the criteria, then the algorithm adjustthe
model frequently and risk wasting resources on insignificachange without sending any message.
changes, or update it infrequently and risk model inacgurac Local algorithms were developed, in recent years, for alarg
and the resulting system degradation. selection of data modeling problems. These include assotia

At least three algorithmic approaches can be followed mile mining [1], facility location [2], outlier detection3],
order to address this dilemma: Tiperiodic approach is to L2 norm monitoring [4], classification [5], and multivaréat
rebuild the model from time to time. Thecrementabpproach regression [6]. In all these cases, resource consumptien wa
is to update the model with every change of the data. Lashown to converge to a constant when the number of nodes
the reactive approach, what we describe here, is to monitdés increased. Still, the main problem with local algorithms
the change and rebuild the model only when it no longéhnus far, has been the need to develop one for every specific
suits the data. The benefit of the periodic approach is jsoblem.
simplicity and its fixed costs in terms of communication and In this work we make the following progress. First, we
computation. However, the costs are fixed independent of theneralize a common theorem underlying the local algosthm

in [1], [2], [4], [5], [6] extending it fromR to R?. Next, we

A preliminary version of this work was published in the Prediags of describe a generic algorithm, relying on the said genesdliz
the 2006 SIAM Data Mining Conference (SDM’'06). . . .
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k clustering which is a good approximation of themeans  Definition 2.4: Theglobal inputis the set of all input§; =

clustering of data distributed over a large distributedteys U Xi i

Our theoretical and algorithmic results are accompanig wi,,cv

a thorough experimental validation, which demonstrate bo We are interested in inducing functions definedcrsince

the low cost and the excellent accuracy of our method. G is not available at any peer, we derive conditionskgnA
The rest of this paper is organized as follows. The ne&nd )V which will allow us to learn the function og. Our

section describes our notations, assumptions, and theaformext set of definitions deal with convex regions which are a

problem definition. In Section Il we describe and prove theentral point of our main theorem to be discussed in the next

main theorem of this paper. Following, Section IV describegection.

the generic algorithm and its specification for the L2 thresh AregionR C R¢ is convex, if for every two points,y € R

olding problem. Section V presents the reactive algoritfons and everyx € [0, 1], the weighted average-z+ (1 — «)-y €

monitoring three typical data mining problemsviz. means R. Let F be a function fromR? to an arbitrary domain

monitoring andk-means monitoring. Experimental evaluatiof). F is constant onR if Vz,y € R : F(z) = F(y).

is presented in Section VI while Section VIl describes eddat Any set or regions{R;, R»,...} induces a cover ofR?,

work. Finally, Section VIII concludes the paper and listsngo R = {R;, Ro, ..., T} in which thetie regionT includes any
prospective future work. point of R? which is not included by one of the other regions.
We denote a given covR » respectiveof F if for all regions
Il. NOTATIONS, ASSUMPTIONS AND PROBLEM except the tie regiorf is constant. Finally, for any: € R?
DEFINITION we denoteR + (z) the first region ofR # which includesz.

In this section we discuss the notations and assumptions
which will be used throughout the rest of the paper. The main _
idea of the algorithm is to have peers accumulate sets of infi Assumptions
vectors (or summaries th.e.reof) from their neighbors. Wesho Throughout this paper, we make the following assumptions:
that under certain conditions on the accumulated vectors a ; S )

; . . -Assumption 2.1:Communication is reliable.

peer can stop sending vectors to its neighbors long before |f: tion 2.2C ication tak |
collects all input vectors. Under these conditions one af tw . ssumption 't.' otmmunlca 10N takes place over a span-
things happens: Either all peers can compute the result froRY comm_unlca lon tree. . ) )
the input vectors they have already accumulated or at leasf\SSumption 2.3Peers are notified on changes in their own
one peer will continue to update its neighbors — and througdfte:, and in the set of their neighbors;.
them the entire network — until all peers compute the correctASSUMption 2.4input vectors are unique.

result. Assumption 2.5A respective covefRx can be precom-
puted forF.
A. Notations Note that assumption 2.1 can easily be enforced in all ar-
Let V = {pi,...,pn} be a set of peers (we use the ternghitectures as the algorithm poses no requirement for orgler

peers to describe the peers of a peer-to-peer system, mcotegr&imeliness of messages. Simple approaches, such as-piggy

a wireless sensor network, etc.) connected to one another RACKing message acknowledgement can thus be implemented

an underlying communication infrastructure. The set ofrped” €V€N the ml?St demand|_ng szcgnanosb— thc};cse 0; W|r.eless
with which p; can directly communicatey;, is known top;. S€"SO networks. Assumption 2.3 can be enforced using a

Assuming connectednesd] always containg; and at least heartbeat mechanism. Assumption 2.2 is the strongest of the

one more peer. Additionally, is given a time varying set of three_. Although solutions that enforce it exist (see _formemba
input vectors inR<. [7]), it seems a better solution would be to remove it altbget

Peers communicate with one another by sending sets 4519 @ method as described by Lies al. [8]. However,

input vectors (below, we show that for our purposes staﬁstidescribing _such a method in _this generic setting is beyoead t.h
on sets are sufficient). We denote B ; the latest set of SCOPe of this paper. Assumption 2.4 can _be enforced t_)y addmg
vectors sent by peep; to p;. For ease of notation, we the place and time of origin to each point and then ignoring

denote the input of; (mentioned above.,. Thus, U X, it in the calculation of7. Assumption 2.5 does not hold for
p; EN;

any function. However, it does hold for many interestingsne
becomes the latest set of input vectors knowmpto The algorithm described here can be sensitive to an ingfficie

Assuming reliable messaging, once a message is delivefé@ice of respective cover.
both p; and p; know both X, ; and X; ;. We further define ~ Note that, the correctness of the algorithm cannot be guar-

four sets of vectors that are central to our algorithm. anteed in case the assumptions above do not hold. Spegificall
Definition 2.1: The knowledgeof p;, is K; = U X duplicate counting of input vectors can occur if Assumption
p,EN: 2.2 does not hold — leading to any kind of result. If messages

Definition 2.2: Theagreemenbf p;, and any neighbop; € are lost then not even consensus can be guaranteed. The only
Niis A;j = X5 U X, positive result which can be proved quite easily is that if at

Definition 2.3: The withheld knowledg®f p; with respect any time the communication infrastructure becomes a fprest
to a neighbop; is the subtraction of the agreement from thany tree will converge to the value of the function on the inpu
knowledgeW, ; = K; \ A ;. of the peers belonging to that tree.



C. Sufficient statistics may perform as badly a® |V|2 in case the vote is tied.

The a|gorithm we describe in this paper deals with Conﬁ\levertheless when the vote is Significant and the distobuti
puting functions of linear combinations of vectorsgn For Of votes is random the algorithm will only consume constant
clarity, we will focus on one such combination — the averaggesources, regardless gf|. Alternative definitions exist for
Linear combinations, and the average among them, can l8eal algorithms and are thoroughly discussed in [9] and.[10
computed from statistics. If each peer learns any inputorect
(other than its own) through just one of its neighbors, then 1. M AIN THEOREMS
for the purpose of computing;, A; ;, andW, ;, the various
X, ; can be replaced with their averag¥; ;, and their size,
|X; ;1. To make sure that happens, all that is required fro
the algorithm is that the content of every message sent; by
to its neighborp; would not be dependent on messages
previously sent tg;. In this way, we can rewrite:

The main theorem of this paper lay the background for
local algorithm which guarantees eventual correctness in
the computation of a wide range of ordinal functions. The
theorem generalizes the local stopping rule described ]in [1
by describing a condition which bounds the whereabouts of
the global average vector iR? depending on thé&; A; ; and
o Kl = Z RN W; ; of each peep;.
. 1A :”jlgévf 141X Theorem 3.1:[Main Theorem] Let G(V, E') be a spanning
|V\;7J'| _ |ICZ-"|7— A, -7]|1 tree in whichV is a set of peers and Ie¥; ; be the input of
J ' 7 p;, KC; be its knowledge, andl; ; and W, ; be its agreement

o K= Z ||Ing|Xj,i and withheld knowledge with respect to a neighpere N;
piEN; as defined in the previous section. LRtC R? be any convex
o« A= %Xm + I‘jJ]‘IX” region. If at a given time no messages traverse the network

and for allp; andp; € N; K;, A; ; € R and either; ; = 0
or W;; € R as well, theng € R.

o Proof: Consider a communication grap8(V, E) in
D. Problem Definition which for some convexX? and everyp; andp; such that, €

We now formally define the kind of computation providedV; it holds thatC;, A; ; € R and eithedV; ; = 0 orW; ; € R
by our generic algorithm and our notion of correct and afs well. Assume an arbitrary leaf is eliminated and all of
accurate computation. the vectors inYV; ; are added to its sole neighbpr. The

Problem definitionGiven a functionZ, a spanning network new knowledge op; is K'; = KC; UW; ;. Since by definition
treeG(V, E) which might change with time, and a set of timeéC; N W, ; = 0, the average vector of the new knowledge of
varying input vectorsX; ; at everyp; € V, the problem is to p;, K';, can be rewritten ak; UW, ; = a-K; +(1—a)- W, ;
compute the value of over the average of the input vectordor some« € [0,1]. Since R is convex, it follows from
[ K;, Wi ; € RthatK'; € R too.

While the problem definition is limited to averages of data Now, consider the change in the withheld knowledge of
it can be extended to weighted averages by simulation. Ifpa with respect to any other neighbpg € N; resulting from
certain input vector needs to be given an integer weight sending such a message. The n&y; , = W, ;UW,; ;. Again,
thenw peers can be simulated inside the peer that has tsatceWV; ; N W, = 0 and sinceR is convex it follows from
vector and each be given that input vector. Likewise, if it i8V; ;, W, € R thatW’,, € R as well. Finally, notice the
desired that the average be taken only over those inputhwhigreements agf; with any neighbop;, exceptp; do not change
comply with some selection criteria then each peer can apply a result of such message.
that criteria toX; ; apriori and then start off with the filtered Hence, following elimination op; we have a communica-
data. Thus, the definition is quite conclusive. tion tree with one less peer in which the same conditionk stil

Because the problem is defined for data which may changeply to every remaining peer and its neighbors. Proceeding
with time, a proper definition of algorithmic correctnessanuwith elimination we can reach a tree with just one pger
also be provided. We define ttaecuracyof an algorithm as still assured thak’; € R. Moreover, since no input vector was
the number of peers which compute the correct result at alogt at any step of the eliminatioi; = G. Thus, we have that
given time, and denote an algorithm exbust if it presents under the said condition§ € R. ]
constant accuracy when faced with stationarily changirig.da Theorem 3.1 is exemplified in Figure 1. Three peers are
We denote an algorithm asventually correctif, once the shown, each with a drawing of its knowledge, it agreement
data stops changing, and regardless of previous changes,with its neighbor or neighbors, and the withheld knowledge.
algorithm is guaranteed to converge to a hundred percéddtice the agreemend; » drawn forp, is identical toAs ; at
accuracy. p2. For graphical simplicity we assume all of the vectors have

Finally, the focus of this paper is docal algorithms. As the same weight — and avoid expressing it. We also depict
defined in [1], a local algorithm is one whose performandbe withheld knowledge vectors twice — once as a subtraction
is not inherently dependent on the system size, in which of the agreement from the knowledge — using a dotted line —
|V| is not a factor in any lower bound on performance. Noticend once — shifted to the root — as measured in practice. If
locality of an algorithm can be conditioned on the data. Fdéne position of the three peers’ data is considered vissaha
instance, in [1] a majority voting algorithm is describedigéh circular region then the conditions of Theorem 3.1 hold.




Now, assume what would happen when pgeris elimi- overlapping region, peers reach consensus on the choice of
nated. This would mean that all of the knowledge it withhold®gion and, hence, on the output.
from p, is added toXl, and to W, 3. Since we assumed These two issues become more complex for a gengral
Wi 2| = |[K2| = 1 the result is simply the averaging of theover R?. First, for many interesting”, the regions in which
previousK, and W, ». Notice both these vectors remain irthe function is constant are not all convex. Also, there @oul
the circular region. be many more than two such regions, and the selection of the
Lastly, asp, is eliminated as welllV, 5 — which now also region in which the stopping rule needs be evaluated becomes
includesV, » —is blended into the knowledge pf. Thus,KC3  non-trivial.
becomes equal tg. However, the same argument, as applied We therefore provide two lemmas which provide a way to
in the elimination ofp;, assures the neW; is in the circular deal with the selection problem and an answer to the case
region as well. where in which a function cannot be neatly described as a
partitioning of R? to convex regions in which it is constant.
Lemma 3.2:[Consensus]Let G(V, E) be a spanning tree
in which V' is a set of peers and let;; be the input ofp;,
K; be its knowledge, andl; ; andV; ; be its agreement and
withheld knowledge with respect to a neighbor € N; as
defined in the previous section. L&z = {R;, Ra,...,T}
be aF-respective cover, and I&® ~ (x) be the first region in
R# which containse. If for every peerp; and everyp; € N;
"Rr (K;) = Rr (A;;) then for every two peers; and py,
Rz (Ki) = R (K2)-
Proof: We prove this by contradiction. Assume that
the result is not true. Then there are two pegfsand
pe wWith Rz (K;) # Rz (K;). Since the communication
graph is a spanning tree, there is a path fropto p, and
somewhere along that path there are two neighbor peers,
andp, such thatR# (K,)) # R (K,). Notice, however, that
Auo = Ay . Therefore, eitheRx (K,) # Rr (Au,) oF
Rz (Ky) # R (Ayu) — a contradiction. ]
Building on Lemma 3.2 above, a variant of Theorem 3.1 can
be proved which makes use of a respective cover to compute
the value ofF.
Theorem 3.3:Let G(V, E) be a spanning tree in whici
is a set of peers and leX;; be the input ofp;, K; be its
knowledge, and4; ; andW; ; be its agreement and withheld
Fig. 1. At Figure 1(a) the data at all three peers concur vithdonditons knowledge with respect to a neighbpy € N; as defined
Cuospromy e  Simelcd ma¥. somiops g, M (e previous secton LeR — (R, I, T} be 2
Z?fezfeqduzr:]él/cs aqﬁé Wha 3 do change bult’QStiII remali)r? in the 32;me region.r(:"Sp(:"CtiVe cover, and IR+ () be the first region inR»
When subsequently, in Figure 1(g)z is eliminated againC; = G which Which containsz. If for every peerp; and everyp; € N;
demonstrateg is in the circular region. Rr (E) =Rr (A—”) # T and if furthermore eithew; ; =
0 or W;; € R (K;) then for everyp;, F(K;) = F(G).
To see the relation of Theorem 3.1 to the previous the Froof: FromLemma 3.2t follows that all peers compute
)t,he sameR # (K;). Thus, since this region is ndt, it must be

Majority-Rule algorithm [1], one can restate the majorit i
voting problem as deciding whether the average of zero-of@vex. It therefore follows from Theorem 3.1 tHats, too,
in Rz (K;). Lastly, sinceR s is a respective coveF must

votes is in the segment), ) or the segment\,1]. Both X =

segments are convex, and the algorithm only stops if for ¢ constant on all regions except Thus, the value o (9)

peers the knowledge is further away fronthan the agreement S €qual to that ofF(K;), for any p;. =

— which is another way to say the knowledge, the agreement,

and the withheld data are all in the same CONVeX region.|\, A G eNERIC ALGORITHM AND I TS INSTANTIATION

Therefore, Theorem 3.1 generalizes the basic stopping rule

of Majority-Rule to any convex region iR?. This section describes a generic algorithm which relies
Two more issues arise from this comparison: one is that @am the results presented in the previous section to compute

Majority-Rule the regions used by the stopping rule coiacidhe value of a given function of the average of the input

with the regions in whichF is constant. The other is that invectors. This generic algorithm is both local and evenyuall

the Majority-Rule, every peer decides according to which abrrect. The section proceeds to exemplify how this generic

the two regions it should try to stop by choosing the regicagorithm can be used by instantiating it to compute whether

which includes the agreement. Since there are just two ndhe average vector has length above a given threshdld) =

s

(c) After elimination ofpa.




other hand, one of the aforementioned cases do occur, then

0 |z <e o .
. L2 thresholding is both an important problem

1 |lz|| > ¢ p; sends a message. This is performed by SeadMessage
in its own right and can also serve as the basis for data minifgthod. IfK; is in 7" thenp; simply sends all of the withheld
algorithms as will be described in the next section. data. Otherwise, a message is computed which will asdure

andW; ; are inRx (K;).

One last mechanism employed in the algorithm is a “leaky
bucket” mechanism. This mechanism makes certain no two

The generic algorithm, depicted in Algorithm 1, receives afessages are sent in a period shorter than a constamsiaky
input the functionF, a respective coveR+, and a constant, pycket is often used in asynchronous, event-based systems t
L, whose function is explained below. Each pgerutputs, prevent event inflation. Every time a message needs to be sent
at every given time, the value of based on its knowledge the algorithm checks how long has it been since the last one
K;. was sent. If that time is less thdn the algorithm sets a timer

The algorithm is event driven. Events could be one of thgr the reminder of the period and calliChangeagain when
following: a message from a neighbor peer, a change in the: timer expires. Note that this mechanism does not enforce
set of neighborsg(.g, due to failure or recovery), a change irany kind of synchronization on the system. It also does not

the local data, or the expiry of a timer which is always set tgfect correctness: at most it can delay convergence becaus
no more thanZ. On any such event; calls theOnChange information would propagate more slowly.
method. When the event is a messagg/.X | received from
E‘ r;eighborpﬁ-, Di Wr?l”d updateX; ; to X and |X; ;| to |X| Algorithm 1 Generic Local Algorithm

efore it callsOnChange .

T . __Input of peer p;: F, R ={Ry,R>,..., T}, L, X;;, and

The objective of theOnChangemethod is to make certain P peerp 7= R R ! ’
that the conditions of Lemma 3.3 are maintained for the pe/ggi hoc output of peer p;: F (K;)
that runs it. These conditions requik&, A; ;, andWi; (N 5o structure for iy For each;)- €N X, (X X
case it is not null) to all be iR x (K;), which is not the tie X, .|, last.messa el j i Niggy [ Al Agis
regionT. Of the threeC; cannot be manipulated by the pee'JrniEi’;\Iizatioh' lastgmessage oo
The peer thus manipulates bath ;, andWV; ; by sending a On receiving a m(_essag@_( X | from p;:
message tg;, and subsequently updating; ;. _ X, — X, X4 — |X] ’ /

In caseR.» (ICZ) # T one way 0 adjusid; ; andW; s0 Ehange m)é“ N;, K; or |K;|: call OnChange()
that the conditions of Lemma 3.3 are maintained is to se Change() '
the entire)V; ; to p;. This Wguld makeAZ—quual to/C;, and For eachp; € Ni:
therefore maket; ; equal tokC; and inR # (K;). Additionally, _ If one 0]3 the flollowing conditions oceur:
W;,; becomes empty. However, this solution is one of th_el R (F) — T and eitherd,; + K; or | A, ;| # |Ki|
many possible changes 14, ; andW; ;, and not necessarily _ ' |V\§ | Z0 and A £ K, w ! ’
the optimal one. We leave the method of finding a value for 5’ A_l_’Jg R () (;’rJW- _Zg R ()
the next messag¥; ; which should be sent by, unspecified _ th.enw F A I F A
at this stage, as it may depend on characteristics of théfispec call SendMessage,)

Rr. .
. . — . . SendMessag@:;):
The other possible case is th&tr (K;) = T'. SinceT is If time () — lga@;Z )message .

always the last region_de, Fhis meansiC; is_ outside any _ If Rr (E) = T then the newX,, and| X, | areW,;
other regionR € R . Sincel is not necessarily convex, theand Wi, respectively ’ ’ '
only thipn which will guarqntee.eventual correctness i th_ Othergvise compute neW,; and|X; ;| such that
case is If.pi sends the entire withheld knowledge to everm Ry (K) and eitheer €Ry (K) or [W,j| =0
neighbor it has. . — last_message — time 0

Lastly, we need to address the possibility that a@outhSendXi X0 to p,
Wil = 0 we will have A; ; which is different fromK;. gga Jriend !
.Th.is can happere.g, when the withheld knowledge i§ sent_ \wait 7, — (time () — last_message) time units and then
in its entirety and subsequently the local data changescuotca” OnChange()
this possibility results only from our choice to use suffittie
statistics rather than sets of vectors: Had we used sets of
vectors,V; ; would not have been empty, and would fall into
one of the two cases above. As it stands, we interpret the case
of non-emptyW; ; with zero|W; ;| as if W, ; is in T B. Eventual correctness

It should be stressed here that if the conditions of LemmaProving eventual correctness requires showing that if both
3.3 hold the peer does not need to do anything even if itse underlying communication graph and the data at eveny pee
knowledge changes. The peer can rely on the correctnessefse to change then after some length of time every peer
the general results from the previous section which aséuate twould output the correct resulf (G); and that this would
if 7 (K;) is not the correct answer then eventually one of itsappen forany static communication tre€(V, E), any static
neighbors will send it new data and chanie If, one the dataX;; at the peers, and any possible state of the peers.

A. Generic Algorithm




Proof: [Eventual Correctnes$ Regardless of the state ofto an empty withheld knowledge and must concur with the
Ki, Aij, Wi, the algorithm will continue to send messagesonditions of Lemma 3.3. However, the algorithm begins with
and accumulate more and more®fin each/C; until one of |X; ;| = LQ‘XJ' and only gradually increases the weight,
two things happens: One is that for every p&&r= G and trying to satisfy the conditions without sending all data.
thusA; ; = IC; for all p; € N;. Alternatively, for everyp; A, ;
is in R+ (K;), which is different thar?’, andW ; is either in  Algorithm 2 Local L2 Thresholding
Rz (Ki) as well or is empty. In the former cas€; = G, SO Input of peer p;: ¢, L, Xs0, N,
every peer obviously compute’ (K;) = F (G). In the latter Global constants: A random seeds
case, Theorem 3.1 dictates tfate Ry, soF (Ki) = F (G) Data structure for p;: For eachp; € N; X;, | Xi.;], X;.0n
too. Finally, provided that every message sent in the dlyori |X:.4], last_message
carries the information of at least one input vector to a peglutput of peer p;: 0 if HEH < ¢, 1 otherwise
that still does not have it, the number of messages sent batweomputation of R z:
the time the data stops changing and the time in which evargt R, = {Z:]|Z]| <e}
peer has the data of all other peers is bounded)t<yv|2). Let uy,...,u, be pseudo-random unit vectors and let
B H;,={Z:7 u; >e¢}
Rz ={Rin, H1,...,Hy, T}.
Computation of |X; ;| and X; ;:

C. Local L2 Norm Thresholding X KK IX 6 X
% T
Following the description of a generic algorithm, specifig, (i X (_IK:V‘Cz X_Jllel

algorithms can be implemented for various functighsOne

of the most interesting functions (also dealt with in our , |
previous paper [4]) is that of thresholding the L2 norm of X, i K| = 1X4] — w
the average vector, i.e., deciding|j§|| < e. While (A;; ¢ Rr (K:) or Wi, & R (K:) and | Wi.;| # 0)

To produce a specific algorithm from the generic one, thitialization: last_message «— —oo0, COMPULER £
following two steps need to be taken: On receiving a messagex, | X| from p;:
1) A respective coveR r, needs to be found - X, — X, |X,il < |X]
2) A method for findingX; ; and|X; ;| which assures that On change inX; ;, N;, K; or |K;|: call OnChange()
both A; ; andW; ; are in R needs to be formulated OnChange)
In the case of L2 thresholding, the area for whitoutputs For eachp; € N;:
true — the inside of an circle — is convex. This area is denoted- If one of the following conditions occur:
R:,. The area outside thecircle can be divided by randomly— 1. R# (K;) = T and eitherA; ; # K; or |A; ;| # |Ki]
selecting unit vectorsiy, ..., 4, and then drawing the half-— 2. W, ;| =0 and A; ; # K; -
spacesH,; = {i:i-i; > ¢}. Each half-space is convex.— 3. Ai; & Rx (Ki) or Wi ; & R (Ki)
Also, they are entirely outside thecircle, soF is constant on — then
every H;. {Ry,, H,,...,H;, T} is, thus, a respective cover.— — call SendMessage;)
Furthermore, by increasing the area between the halfspaceSendMessag@; ):
and the circle or the tie area can be minimized to any desirédiime () — last_message > L L
degree. —If Rz (K;) =T then the newX; ; and|X; ;| are W, ;
It is left to describe how th&SendMessagemethod com- and|[W; ;|, respectively
putes a message that forcg; and W into the region — Otherwise compute new; ; and|X; ;|
which containsk; if they are not in it. A related algorithm, — last-message « time ()
Majority-Rule [1], suggests sending all of the withheld ko — SendX; ;, |X; ;| to p;
edge in any case. However, experiments with dynamic ddte
hint this method may be unfavorable. If all or most of the Wait L — (time () — last_message) time units and then
knowledge is sent and the data later changes the withh&Rll OnChange()
knowledge becomes the difference between the old and the
new data. This difference tends to be far more noisy than the
original data. Thus, while the algorithm makes certdirn; and
W; ; are brought into the same region /s, it still makes an V. REACTIVE ALGORITHMS

effort to maintain some withheld knowledge. The previous section described an efficient generic local
Although it may be possible to optimize the size|¥¥; ;|  aigorithm, capable of computing any function even when the
we take the simple and effective approach of testing @@ta and system are constantly changing. In this section, we
exponentially decreasing sequence|)df; ;| values, and then |eyerage this powerful tool to create a framework for pradgc
choosing the first such value satisfying the requirements fang maintaining various data mining models. This framework
Ai j andW; ;. When a peep; needs to send a message, it firs§ simpler than the current methodology of inventing a sieci
sets the newX; ; to W Then, it tests a sequencedistributed algorithm for each problem and may be as efficien
of values for|X; ;|. Clearly, | X; ;| = |K;| — | X, translates as its counterparts.




The basic idea of the framework is to employ a simpersist for a given period of time before the convergecast
ple, costly, and possibly inaccuratmnvergecasilgorithm advances. Experimental evidence suggests that settitg
in which a single peer samples data from the network aeden a fraction of the average edge delay greatly reduces the
then computes, based on this “best-effort” sample, a datamber of convergecasts without incurring a significanagel
mining model. Then, this model ibroadcastto the entire in the updating ofz.
network; again, a technique which might be costly. Onceryeve A second detail is the separation of the data used for adertin
peer is informed with the current model, a local algorithm; the input of the L2 thresholding algorithm — from that which
which is an instantiation of the generic algorithm is used used for computing the new average. If the two are the
in order to monitor the quality of the model. If the modekame then the new average may be biased. This is because an
is not sufficiently accurate or the data has changed to thkert, and consequently an advancement in the convergecast
degree that the model no longer describes it, the monitorirggbound to be more frequent when the local data is extreme.
algorithm alerts and triggers another cycle of data catbecit Thus, the initial data, and later every new data, is randomly
is also possible to tune the algorithm by increasing the gampssociated with one of two buffer®;, which is used by the
size if the alerts are frequent and decreasing it when theg Thresholding algorithm, and’;, on whom the average is
are infrequent. Since the monitoring algorithm is everyualcomputed when convergecast advances.
correct, eventual convergence to a sufficiently accuratdano A third detail is the implementation of the convergecast
is very likely. Furthermore, when the data only goes througdrocess. First, every peer tracks changes in the knowlefige o
stationary changes, the monitoring algorithm triggerseal the underlying L2 thresholding algorithm. When it movesiiro
alerts infrequently and hence can be extremely efficientisTh inside thec-circle to outside the-circle the peer takes note of
the overall cost of the framework is low. the time, and sets a timer totime units. When a timer expires
We describe two instantiations of this basic frameworkheaor when a data message is received from one of its neighbors
highlighting a different aspect. First we discuss the peabl p; checks if currently there is an alert and if it was recorded
of computing the mean input vector, to a desired degree ©for more time units ago. If so, it counts the number of its
accuracy. Then, we present an algorithm for computing reeighbors from whom it received a data message. If it redeive
variant of thek-means clusters suitable for dynamic data. data messages from all of its neighbors, the peer moves to the
broadcast phase, computes the average of its own data and
of the received data and sends it to itself. If it has received
data messages from all but one of the neighbors then this
The problem of monitoring the mean of the input vectors hashe neighbor becomes the peer’s parent in the convergecast
direct applications to many data analysis tasks. The disgecttree; the peer computes the average of its own and its other
in this problem is to compute a vectar which is a good neighbors’ data, and sends the average with its cumulative
approximation forG. Formally, we require thallG — 7i|| < ¢ weight to the parent. Then, it moves to the broadcast phése. |
for a desired value of. two or more of its neighbors have not yet sent a data messages
For any given estimat@, monitoring whethe|G — 71| < p, keeps waiting.
e is possible via direct application of the L2 thresholding |astly, the broadcast phase is fairly straightforward.fgve
algorithm from Section IV-C. Every peer; subtractsz from  peer which receives the ne vector, updates its data by
every input vector inX; ;. Then, the peers jointly execute L2subtracting it from every vector iR; and transfers those
Norm Thresholding over the modified data. If the resultingectors to the underlying L2 thresholding algorithm. Then,
average is inside the-circle thenz is a sufficiently accurate it re-initializes the buffers for the data messages and sérel
approximation ofG; otherwise, it is not. new T vector to its other neighbors and changes the status to
The basic idea of the mean monitoring algorithm is tgonvergecast. There could be one situation in which a peer
employ a convergecast-broadcast process in which the cegceives a newr vector even though it is already in the
vergecast part computes the average of the input vectors aa#lvergecast phase. This happens when two neighbor peers
the broadcast part delivers the new average to all the peeysacurrently become roots of the convergecast tree (ifeenw
The trick is that, before a peer sends the data it collecteiti@ip each of them concurrently sends the last convergecast gessa
convergecast tree, it waits for an indication that the aurfies  to the other). To break the tie, a root pggrwhich receives
not a good approximation of the current data. Thus, when tjefrom a neighbomp; while in the convergecast phase ignores
currenty is a good approximation, convergecast is slow antle message if > j it ignores the message. Otherwise i j

only progresses as a result of false alerts. During this,timg treats the message just as it would in the broadcast phase.
the cost of the convergecast process is negligible compared

to that of the L2 thresholding algorithm. When, on the other o

hand, the data does change, all peers alert almost immigdiatg: #-Méans Monitoring

Thus, convergecast progresses very fast, reaches thearabt, \We now turn to a more complex problem, that of computing

initiates the broadcast phase. Hence, a meis delivered to the k-means of distributed data. The classic formulation of

every peer, which is a more updated estimate of the k-means algorithm is a two step recursive process in
The details of the mean monitoring algorithm are given iwhich every data point is first associated with the nearest of

Algorithm 3. One detail is that of an alert mitigation comdta & centroids, and then every centroid is moved to the average

7, selected by the user. The idea here is that an alert shoafdhe points associated with it — until the average is theesam

A. Mean Monitoring



Algorithm 3 Mean Monitoring

Input of peer p;: €, L, X, ;, the set of neighbord/;, an
initial vector7zg, an alert mitigation constant.

Output available to every peerp;: An approximated means

vectory

Data structure of peer p;: Two sets of vectord?;, andT;, a

timestamplast_change, flags:alert, root, andphase, for
eachp; € N;, a vectorv; and a countet;

Initialization:

Setn « Tg, alert «— false, phase < convergecast
Split X; ; evenly betwee?; andT;

Initialize an L2 thresholding algorithm with the inpat L,
{T—-m:T€ R}, N;

Setw;, ¢; to Ty, | T;|, respectively, andy;, c; to 0,0 for all
otherp; € N;

On addition of a new vector to X; ;:

Randomly addr to eitherR; or T;

If = was added tar;, update the input of the L2
thresholding algorithm td7 —  : = € R;}

Otherwise, update; andc;.

On change inF (K;) of the L2 thresholding algorithm:
If ||EH > ¢ andalert = false then

— setlast_change « time()

— setalert < true

— set a timer tor time units

If ||KCi]| < e then

— Setalert < false

On receiving a data message, c from p; € N;:
Setv; «— U, ¢j — ¢

Call Convergecast

On timer expiry or call to Convergecast:

If alert = false return

If time() — last_change < T set timer to

time() + 7 — last_change and return

If for all pr, € N; except for onez;, # 0

- Lets = ijeNi Cjy 8= ijeNi %W

— Sends, s to p;

— Setphase «— Broadcast

If for all pr, € N; ¢, #0

- Lets= ijeNi Cjr 5 = ijeNi i

— Setphase «— Convergecast

— Sendp to all pr, € N;

On receiving 1/ from p; € N;:

If phase = convergecast andi > j then return

Setq «— i/

Replace the input of the L2 thresholding algorithm with
{Z—m:7T€R;}

Setphase < convergecast and set allc; to 0

Sendz to all p,, # p; € N;

Other than that follow the L2 thresholding algorithm

as the centroid. To make the algorithm suitable for a dynamic
data setup, we relax the stopping criteria. In our formatati

a solution is considered admissible when the average ot poin
is within an e-distance of the centroid with whom they are
associated.

Similar to the mean monitoring, tHemeans monitoring al-
gorithm (Algorithm. 4) is performed in a cycle of convergsta
and broadcast. The algorithm, however, is different in some
important respects. First, instead of taking part of jusé on
execution of L2 thresholding, each peer takes part isuch
executions — one per centroid. The input of #& execution
are those points in the local data s€f, for which the ¢th
centroid, ¢z, is the closest. Thus, each execution monitors
whether one of the centroids needs to be updated. If even one
execution discovers that the norm of the respective knoyded

ICfH is greater tham, the peer alerts, and if the alert persists
or 7 time units the peer advances the convergecast process.

Another difference betweek-means monitoring and mean
monitoring is the statistics collected during convergedask-
means monitoring, that statistics is a sample of sigdictated
by the user) from the data. Each peer samples with returns
from the samples it received from its neighbors, and from
its own data, such that the probability of sampling a point is
proportional to a weight. The result of this procedure is tha
every input point stands an equal chance to be included in
the sample that arrives to the root. The root then computes
the k-means on the sample, and sends the new centroids in a
broadcast message.

V1. EXPERIMENTAL VALIDATION

To validate the performance of our algorithms we conducted
experiments on a simulated network of thousands of peers. In
this section we discuss the experimental setup and andigze t
performance of the algorithms.

A. Experimental Setup

Our implementation makes use of the Distributed Data
Mining Toolkit (DDMT)!- a distributed data mining devel-
opment environment from DIADIC research lab at UMBC.
DDMT uses topological information which can be generate
by BRITE?, a universal topology generator from Boston
University. In our simulations we used topologies genefate
according to theBarabasi Albert (BA)model, which is often
considered a reasonable model for the Internet. BA alsoekefin
delays for network edges, which are the basis for our time
measurement On top of the network generated by BRITE,
we overlayed a spanning tree.

The data used in the simulations was generated using a
mixture of Gaussians ilR?. Every time a simulated peer
needed an additional data point, it sampteGaussians and
multiplied the resulting vector with d x d covariance matrix
in which the diagonal elements were all 1.0’'s while the off-
diagonal elements were chosen uniformly between 1.0 and

Lhttp://www.umbc.edu/ddm/wiki/software/DDMT

2http://www.cs.bu.edu/brite/

SWwall time is meaningless when simulating thousands of cderpwon a
single PC.
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Fig. 2. A typical experiment is run for 10 equal length epochse epochs have very similar means, and very large variduaelity and overall cost are
measured across the entire experiment — including transitiphases.

2.0. Alternatively, 10% of the points were chosen uniformlthus defined in terms of normalized messages - the portion
at random in the range qf + 30. At controlled intervals, of this maximal rate which the algorithm uses. Thus, 0.1
the means of the Gaussians were changed, thereby creating@malized messages means that nine times out of ten the
epoch change. A typical data in two dimensions can be seeraigorithm manages to avoid sending a message. We report
Figure 2(a). We preferred synthetic data because of the latgpth overall cost, which includes the stationary and ttaorsal
number of factors (twelve, in our analysis) which influerfoe t phases of the experiment (and thus is necessarily highat), a
behavior of an algorithm, and the desire to perform a tightihe monitoring cost, which only refers to stationary pesiod
controlled experiment in order to understand the behavior ®he monitoring cost is the cost paid by the algorithm even
a complex algorithm which operates in an equally as compléxhe data remains stationary; hence, it measures the &aast
environment. effort” of the algorithm. We also separate, where appraeria
The two most important qualities measured in our expefessages pertaining to the computation of the L2 threshgldi
ments are theuality of the result and theost of the algo- algorithm from those used for convergecast and broadcast of
rithm. Quality is defined differently for the L2 thresholgdin Statistics.
algorithm, the mean monitoring algorithm, and theneans  There are many factors which may influence the perfor-
algorithm. mance of the algorithms. First, are those pertaining to the
For the L2 thresholding algorithm, quality is measured idata: the number of dimensios the covariancer, and the
terms of the number of peers correctly computing an alefistance between the means of the Gaussians of the different
i.e. the percentage of peers for wholfiC;|| < ¢ when epochs (the algorithm is oblivious to the actual values ef th
|G|| < e, and the percentage of peers for whdiii;|| > ¢ means), and the length of the epochs Second, there are
when ||G|| > e. We measure the maximal, average anfdctors pertaining to the system: the topology, the numiber o
minimal quality over all the peers (averaged over a numbpeers, and the size of the local data. Last, there are control
of different experiments). Quality is reported in thredeliént arguments of the algorithm: most importantly- the desired
scenarios: overall quality, averaged over the entire émygert; alert threshold, and then aldo — the maximal frequency of
and quality on stationary data, measured separately fiwger messages. In all the experiments that we report in thismgcti
in which the mean of the data is inside theircle (||G|| <¢) one parameter of the system was changed and the others were
and for periods in which the means of the data is outside tkept at their default values. The default values were : numbe
circle (||G]| > ¢). of peers = 1000/X,;| = 800, ¢ = 2, d = 5, L = 500
For the mean monitoring algorithm, quality is the averag@here the average edge delay is about 1100 time units), and
distance betwee@ and the computed mean vecfarWe plot, the Frobenius norm of the covariance of the dgtd|, at
separately, the overall quality (during the entire experith 5.0. We selected the distance between the means so that the
and the quality after the broadcast phase ended. rates of false negatives and false positives are about equal
Lastly, for the k-means algorithm, quality is defined adviore specifically, the means for one of the epochs was +2
the distance between the solution of our algorithm and th@eng each dimension and for the other it was -2 along each

computed by a centralized algorithm, given all the data bf &imension. For each selection of the parameters, we ran the
of the peers. experiment for a long period of simulated time, allowing 10

We have measured the cost of the algorithm accordif§ochs to occur.
to the frequency in which messages are sent by each peeA typical experiment is described in Figure 2(b) and 2(c).
Because of the leaky bucket mechanism which is part of thethe experiment, after every2 10° simulator ticks, the data
algorithm, the rate of messages per average peer is boundsstribution is changed, thereby creating an epoch charme.
by two for every L time units (one to each neighbor, forstart with, every peer is given the same mean as the mean of
an average of two neighbors per peer). The trivial algoriththe Gaussian. Thus a very high percentagel0 %) of the
that floods every change in the data would send messageers states thzﬂﬁH < e. After the aforesaid numbe2 & 10°)
at this rate. The communication cost of our algorithms isf simulator ticks, we change the Gaussian without changing
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Algorithm 4 k-Means Monitoring the mean given to each peer. Thus, for the next epoch, we
Input of peer p;: €, L, X;;, the set of immediate neighborssee that a very low percentage of the peersQ( %) output

N;, an initial guess for the centroids,, a mitigation that ||G|| < e. For the cost of the algorithm in Figure 2(c),
constantr, the sample sizé. we see that messages exchanged during the stationary phase
Output of peer p;: k centroids such that the average of theis low. Many messages are, however, exchanged as soon as
points assigned to every centroid is withirof that centroid. the epoch changes. This is expected since all the peers need
Data structure of peer p;: A partitioning of X; ; into £ sets to communicate in order to get convinced that the distrdouti

X},z- cee X{fi, a set of centroid§’ = {7, ...,c}, for each has indeed changed. The number of messages decreases once
centroidj = 1,...,k, a flagalert;, a times tamp the distribution becomes stable again.

last_change;, a buffer B; and a counteb;, a flagroot and

a flag phase. B. Experiments with Local L2 Thresholding Algorithm
Initialization:

The L2 thresholding algorithm is the simplest one we
SetC «— (. Let ; )
_ - present here. In our experiments, we use the L2 thresholding
X!, =<T€X,,;:¢ =argmin ||T—5||}- Initialize & to establish the scalability of the algorithms with respiect
€ both the number of peers and the dimensionality of the data,
and the dependency of the algorithm on the main parameters
— the norm of the covariance, the size of the local data set,

instances of the L2 thresholding algorithm, such that jitte
instance has input, o, L, 17— : T € Xj, ¢, N;. For all

pj € Nj, Setbj «— 0, for a”j =1,...,k Setalertj — false, the tolerance, and the bucket sizé.

last_change; <+ —oo, andphase «— convergecast

On addition of a new vectorz to X; ;: 100 2

Find thec; closest tor and addz — ¢; to thej*" L2 B 1‘[} H H} IT{ 2005 - tationary period
thresholding instance. a goo4 f b % b ;
On removal of a vectorz from X, ;: g % ~liGli<e §002 t } } i b
Find thec; closest tor and remover — ¢; from the ;" L2 ¢ 8 cllelie g

threShOIdlng_ InStaE:e' . i 8GZOO 500 1000 2000 Ve?fgoo § 200 500 1000 2000 3000
On change in F (ICl) of the j*h instance of the L2 Number of Peers Number of Peers
thresholding algorithm: (a) Quality vs. number of peers (b) Cost vs. number of peers

If HEH > e andalert; = false then set

. . Fig. 3. Scalability of Local L2 algorithm with respect to tmeimber of
last_change; < time(), alert; < true, and set a timer to 9 y 9 P

: ’ peers.
7 time units
If || Ki]| < e then setalert; — false
On receiving B,b from p; € N;: 100 Y
SetB; « B, b; — b and call Convergecast 0 T’Hﬂ’ ]‘HI [ o m -5 ~Overal
On timer expiry or call to Convergecast: g o {» *’ g ~Stationaty period

o = 0.3

If forall ¢ €1,...,k] alerty = false then return 8 3 k
Let t — Ming—1. r {last_messagey : alert; = true} 3; 90 D”g”:z %z'i # # k q ﬂ
Let A be a set ob samples returned b$ample = |looveral § 'G H ﬁ- J&
If time() <t + 7 then set a timer to + 7 — time() and T 2345678910 23456780910
return (a) Quality vs. dimension (b) Cost vs. dimension
If for all p, € N; except for onehy, #£ 0
— Setroot « false, phase «+ Broadcast Fig. 4. Scalability of Local L2 algorithm with respect to théenension of
- Send4, | X, ;| +Y,,—,  bm to p, and return the domain.
If for all pr, € N; by, #0
— Let C’ be the centroids resulting from computing the In Figures 3 and 4, we analyze the scalability of the local L2
k-means clustering oft algorithm. As Figure 3(a) and Figure 3(b) show, the average
— Setroot « true quality and cost of the algorithm converge to a constant as
— SendC’ to self and return the number of peers increase. This typifies local algorithms
On receiving ¢’ from p,; € N; or from self: because the computation is local, the total number of peers d
If phase = convergecast andi > j then return not affect performance. Hence, there could be no deteidorat
SetC «— '’ in quality or cost. Similarly, the number of messages per
Forj=1...k set peer become a constant — typical to local algorithms. Figure

4(a) and Figure 4(b) show the scalability with respect to the

XJ: _EXiiZ_': i T —¢C A . . . .
o v 46 ““g%““”x C”} dimension of the problem. As shown in the figures, quality

ce
Forj =1...|N;| setb; < 0 does not deteriorate when the dimension of the problem is
SendC to all p, # p; € N; increased. Also note that the cost increases approximately
Setphase — Convergecast linearly with the dimension. This independence of the dyali
On call to Sample: can be explained if one thinks of what the algorithm does
Return a random sample frodd; ; with probability in terms of domain linearization. We hypothesis that when

1/ (1 + et V| bm) or from a bufferB; with
probability b, / (|X“-| + et V| bm)
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the mean of the data is outside the circle, most peers ter 'f]
to select the same half-space. If this is true then the pnoble § 95%
is projected along the vector defining that half-space ~ i.e§ *

N

Normalized Messages

becomes uni-dimensional. Inside the circle, the problem g i[> 005
again uni-dimensional: If thought about in terms of the pola® __ o Overall o
coordinate system (rooted at the center of the circle), then 200 800 1000 0 200800 1000, %200
only dimension on which the algorithm depends is the radius. _
(a) Quality vs.|X; ;| (b) Cost vs.| X ;|

The dependency of the cost on the dimension stems from the
linear dependence of the variance of the data on the numbeggfs. Dependency of cost and quality of L2 thresholding &n.; |. Quality

Gaussians, the variance of whom is constant. This was provedefined by th‘TfrTfrcentage of peers correctly computingeat (8eparated

; ; ; for epochs with||G|| less and more thag). Cost is defined as the portion of

n eXp_erlmentS not included here. the leaky buckets intervals that are used. Both overall @odtcost of just the
In Figures 5, 6, 7 and 8 we explore the dependency of the kitionary periods are reported. Overall measuremeniisdiathe transitional

algorithm on different parametexsz. Frobenius norm of the period too.
. 2

covariance of the data (o] ; = 3,y 5y loisl),

the size of the local data bufféX; ;|, the alert threshold,

and the size of the leaky buckét As noted earlier, in each  The third pair of figures, Figure 7(a) and Figure 7(b), présen

experiment one parameter was varied and the rest were k@Rt offect of changing: on both the cost and quality of

at their default values. the algorithm. As can be seen, below a certain point, the
number of false positives grows drastically. The number of

o 109 {,TT i T% %0'25 >Overall false negatives, on the other hand, remains constant legard
8 o 1 } ﬁool'z ° Stationary pefiod h of . Whene is about two, the distances of the two means
g ol { % oal H‘ of the data (for .the two epochs) from the boundary of the
\§ 80 o|IG|I>¢ EO'OSH, h, circle are approximately the same and hence the rates ef fals
T olleOveral : 4 S ¢ : ) positives and false negatives are approximately the same to
lloll, « 10° lioll, < 10" As e decreases, it becomes increasingly difficult to judge if the
(a) Quality vs.|lo]| (b) Cost vs.o]| mean of the data is inside the smaller circle and increaging!

easier to judge that the mean is outside the circle. Thus, the
Fig. 5. Dependency of cost and quality of L2 thresholding|et .. Quality ~number of false positives increase. The cost of the algorith

is defined by the percentage of peers correctly computingeah (geparated gecreases linearly as grows from 0.5 to 2.0, and reaches
for epochs with||G|| less and more thae). Cost is defined as the portion of

the leaky buckets intervals that are used. Both overall @odtcost of just the nearly zero fore = 3. Note that even for a fairly low = 0'5'_ .
stationary periods are reported. Overall measuremeniisdiadhe transitional the number of messages per peer per leaky bucket period is

period too. around 0.75, which is far less than the theoretical maximum
of 2.

The first pair of figures, Figure 5(a) and Figure 5(b), outline o
the dependency of the quality and the cost on the covarian ¢ i % [ "l go s t’;[: Egt"afi’jr']'ary period
of the data § = AFE) where A is the covariance matrix and 2 & g
E is the variance of the gaussians. Matrixis as defined g o ol 3 °°
in Section VI-A while £ is the column vector representing ¢ % o||GJ> gozs #
the variance of the gaussians and takes the values 5, 10, 4 - 5 Q0verall 2 o o5 i ;‘% y
or 25. For epochs withG|| < ¢, the maximal, the average, 0 : @ ' £
and the minimal quality in every experiment decrease ligear (a) Quality vs.c (b) Cost vs.c

with the variance (from around9% on average to around

. = . Fig. 7. Dependency of cost and quality of L2 thresholdingeo®uality is
96%)' EpOChS WIthHQH > ¢, on the other hand, retalneddefined by the percentage of peers correctly computing ah(akparated for

very high quality, regardless of the level of variance. Thepochs with||G|| less and more thar). Cost is defined as the portion of the
overall quality also decreases linearly from around 97% tepky buckets intervals that are used. Both overall coste# of just the
84%, apparently resulting from slower convergence on ev rtil(())(??(r))tlj.penods are reported. Overall measuremeniisdie¢he transitional
epoch change. As for the cost of the algorithm, this increase
as the square root dfo || (i.e., linear to the variance), both
for the stationary and overall period. Nevertheless, evith w Figure 8(a) and Figure 8(b) explore the dependency of
the highest variance, the cost stayed far from the theafeti¢the quality and the cost on the size of the leaky budket
maximum of two messages per peer per leaky bucket perionterestingly, the reduction in cost here is far faster thzm
The second pair of figures, Figure 6(a) and Figure 6(keduction in quality, with the optimal point (assuming 1:1
shows that the variance can be controlled by increasing tiedation between cost and quality) somewhere between 100
local data. A/ X; ;| increases, the quality increases, and cosime units and 500 time units. It should be noted that the
decreases, proportional {g| X; ;|. The cause of that is clearly average delay BRITE assigned to an edge is around 1100
the relation of the variance of an i.i.d. sample to the sampiene units. This shows that even a very permissive leaky
size which is inverse of the square root. bucket mechanism is sufficient to greatly limit the number
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of messages. hand, the quality after the data collection is extremelydjoo
and is independent of. With increasingr, the number of

100 ] 7 ]T §0.08 “overal convergecast rounds per epoch decreases (from three to two
§ % m H H’ *» §006 o Stationary period on average) as shown in Figure 9(b). In our analysis, this
o Y. .
5 = % % results from a decrease in the number of false alerts.
[
5 “lejie]|  &o04 t i .
< o [Gll>e g } {+ Sas 045
o Overall £0.02 =0.24 ®Overall : 3 2
70100 250 500 1000 100 250 500 1000 = \—"Aﬂer Data Collection S 4 038
©» 0.16 8 029
. 2 5 .
(a) Quality vs.L (b) Cost vs.L = Q,5 2
Z0.08 &~ 018
Fig. 8. Dependency of cost and quality of L2 thresholdinglorQuality is 0 o g
defined by the percentage of peers correctly computing ah(akparated for 1K2K Epocﬁ'ﬁ_ength(.r) 10K < 1K2KEpocﬁ'fength ™ ok =
epochs WlthHgH less and more thag). Cost is defined as the portion of the
leaky buckets intervals that are used. Both overall costasd of just the (a) Quality vs. epoch length (b) Cost vs. epoch length
stationary periods are reported. Overall measuremenisd@che transitional
period too. Fig. 10. Dependency of cost and quality of mean monitoringhenlength
of epochT'.

We conclude that the L2 thresholding provides a moderate

rate of false positives even for noisy data and an excelknt r . . .
of false negatives regardless of the noise. It requirds kttm- and stationary periods) t@. The average distance between
the estimated mean vector and the actual one decreases as

munication overhead during stationary periods. Furtheemo hi i T is the following:
the algorithm is highly scalable — both with respect to th@e epoch length” increases. The reason Is the following: at
h epoch, several convergecast rounds usually occur. The

number of peers and dimensionality — because performaﬁ@&

is independent of the number of peers and dimension of t er the rm_md is, the less polluted is the data by reTnantS
problem. of the previous epoch — and thus the more accuratg. is

Thus, when the epoch length increases, the proportion eéthe
later @’s, which are highly accurate, increases in the overall
quality leading to a more accurate average. Figure 10(bysho
Having explored the effects of the different parameters af similar trend for the cost incurred. One can see that the
the L2 thresholding algorithm, we now shift our focus on theumber of L2 messages decreaselamcreases. Clearly, the
experiments with the mean monitoring algorithm. We hawaore accuratez is, the less monitoring messages are sent.
explored the three most important parameters that affect thherefore with increasing’, the quality increases and cost
behavior of the mean monitoring algorithm: — the alert decreases in the later rounds and these effects are reflacted
mitigation period, T’ — the length of an epoch, and— the the figures.
alert threshold. Finally, the average distance betwegnand 7z decreases
as e decreases. This is as expected, since with decreasing

Figure 10(a) depicts the relation of the quality (both ollera

C. Experiments with Means-Monitoring

= 3 - .y
0125 % d b2 § the L2 algorithm ensures that these two quantities be bitough
S oy  [MAfterDamColecion) o 0158 Closer to each other and thus the average distance between
I .
00.075././'—'/' S25 by O them decreases. The cost of the algorithm, however, shows
‘o 0.05 S 0o g the reverse trend. This result is intuitive — with incregsin
< 2 .05 : . . .
0.025 g2 £ the algorithm has a larger region in which to bound the global
> .
100 500 1000 1500 2000 < 100 500 1000 1500 20000 = average and thus the problem becomes easier, and hence less
Alert mitigation period (t) Alert mitigation period (1)
, costly, to solve.
(a) Quality vs.7 (b) Cost vs.7
Fig. 9. Dependency of cost and quality of mean monitoring lua alert § 1 %
mitigation periodr. __0.06 .—_././o §35 8
= ° 0.750
1 ] =
Figure 9, 10 and 11 summarize the results of these expe Zoo S After Data Collection 8 2
. . . N
ments. As can be seen, the quality, measured by the dista < g3 025
ad s = g £
of the actual means vect@f from the computed ong is OG5 5 T 2 o5 i 5 30
excellent in all three graphs. Also shown are the cost grag... & £
with separate plots for the L2 messages (on the right axi$) an () Quality vs.e (b) Cost vs.e
the number of convergecast rounds — _eaCh costs two mess%esll. Dependency of cost and quality of mean monitoringthen alert
per peer on average — (on the left axis) per epoch. thresholde.

In Figure 9(a), the average distance betwe&erand 7
decreases as the alert mitigation peried is decreased for On the whole, quality of the mean monitoring algorithm
the entire length of the experiment. This is as expectedgsinoutcome behaves well with respect to all the three parameter
with a smaller 7, the peers can rebuild the model morénfluencing it. The monitoring coste. L2 messages is also
frequently, resulting in more accurate models. On the othlew. Furthermore, on an average, the number of convergecast
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rounds per epoch is around three — which can easily be redug®d three categories: convergecast based or centraliged a

further by using a longer as the default value. rithms, gossip based algorithms, and local algorithms. &om
_ _ - best-effort heuristics [11], [12], [13] were suggested agl.w
D. Experiments withk-Means Monitoring The first category, convergecast based algorithms, is psrha

the simplest. Algorithms such as [14] provide generic sohg
— suitable for the computation of multiple functions. They
are also extremely communication efficient: computing the
average, for instance, only requires one message from each
peer. Some of these algorithms can be extremely synchinize
— every round of computation taking a lot of time. This
becomes very problematic when the data is dynamic and
computation has to be iterated frequently. Other, such as
(a) Average quality vs. sample siz¢b) Average monitoring cost vs. sam- STAR [15] can dynamically tune accuracy and timeliness vs.
ple size communication overhead. The most thorough implementation
Fig. 12. Dependency of quality and cost kfmeans monitoring on the Of this approach is possibly the Astrolabe system [16] which
sample size implement a general purpose infrastructure for distribute
system monitoring.
In this set of experiments our goal is to investigate the The second category, gossip based algorithms, relies on the
effect of the sample size on tihemeans monitoring algorithm. properties of random walks on graphs to provide probaluilist
To do that we compare the results of our algorithm to thosstimates for various statistics of data stored in the graph
of a centralized algorithm that processed the entire data. WWossip based computation was first introduced by Kegipe
compute the distance between each centroid computed by @ahd17], and have, since then, been expanded to general graphs
peer-to-peer algorithm and the closest centroid compuyed tby Boydet al.[18]. The first gossip based algorithms required
the centralized one. Since our algorithm is not only distieldl  that the algorithm be executed from scratch if the data cksing
but also sample-based, we include for comparison the sesiilt order to maintain those guarantees. This problem was late
of centralized algorithm which takes a sample from the entinddressed by Jelasitgt al. [19]. The main benefit of our
data as its input. The most outstanding result, seen in &ig@lgorithm with respect to gossiping is that it is data driven
12(a), is that most of the error of the distributed algorittsm Thus, it is far more efficient than gossiping when the changes
due to sampling and not due to decentralization. The errare stationary.
both average, best case, and worst case, is very similaato th Local algorithms were first discussed by Afek al. [20],
of the centralized sample-based algorithm. This is siganific Linial [21], and Naor and Stockmeyer [22], in the context of
in two ways. First, the decentralized algorithm is obviguslgraph theory. Kutten and Peleg introduced local algoritims
an alternative to centralization; especially considerthg which the input is data which is stored at the graph vertices,
far lower communication cost. Secondly, the error of theather than the graph itself [23]. The first application of
decentralized algorithm can be easily controlled by insirga local algorithms to peer-to-peer data mining is the Mayerit
the sample size. Rule algorithm by Wolff and Schuster [1]. Since then, local
The costs ofk-means monitoring have to be separated t@igorithms were developed for other data mining tasks
those related to monitoring the current centroids and thodecision tree induction [24], multivariate regression [8tlier
related to the collection of the sample. Figure 12(b) pressemletection [3], L2 norm monitoring [4], approximated sum],25
the costs of monitoring a single centroid and the number ahd more. The algorithm for L2 thresholding, and an initial
times data was collected per epoch. These could be muttipligpplication of that algorithm fok-means monitoring were first
by & to bound the total costs (note that messages relatipgesented in a previous publication by the authors of thigepa
to different centroids can be piggybacked on each othel].
The cost of monitoring decreases drastically with incregsi
sample size — resulting from the better accuracy provided by
the larger sample. Also there is a decrease in the number of
convergecast rounds as the sample size increases. Thétdefaln this paper we present a generic algorithm which can
value of the alert mitigation factar in this experimental setup computeany ordinal function of the average data in large
was 500. For any sample size greater than 2000, the num@istributed system. We present a number of interestingi-appl
of convergecast rounds is about two per epoch — in the figations for this generic algorithm. Besides direct contitns
round, it seems, the data is so much polluted by data frdfthe calculation of L2 norm, the mean, akdneans in peer-
the previous epoch that a new round is immediately triggerd@-peer networks, we also suggest a new reactive approach in
As noted earlier, this can be further decreased using arlargéich data mining models are computed by an approximate or
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VIII. CONCLUSIONS ANDOPEN QUESTIONS

value of r. heuristic method and are then efficiently judged by an efficie
local algorithm.
VII. RELATED WORK This work leaves several interesting open questions. The

Algorithms for large distributed systems have been devdirst is the question of describing the “hardness” of locally
oped over the last half decade. These can be roughly classiitemputing a certain functionr — its “locallability”. For
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instance, it is simple to show that majority voting lendglits [18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “ GossipoAigms:
better for local computation than the parity function. Howe Design, Analysis and Applications,” iRroceedings of INFOCOM'05

. . Miami, Florida, 2005, pp. 1653-1664.
there is lack of an Orderly method by which the hardne ] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossifsdxh Aggregation

of these and other functions can be discussed. The second in Large Dynamic Networks, ACM Transactions on Computer Systems
interesting question is the question of robustness of argen vol. 23, no. 3, pp. 219 — 252, 2005.

| | al ithm | loai L . . f 20] Y. Afek, S. Kutten, and M. Yung, “Local Detection for Glal Self
ocal algorithm for general topologies. Last, in view of ou Stabilization,” Theoretical Computer Scienceol. 186, no. 1-2, pp. 199—

generic algorithm it would be interesting to revisit Nacaisd 230, 1997.
Stockmeyer’s question [22] regarding the limitations ofdb [21] N. Linial, “Locality in Distributed Graph Algorithm$,SIAM Journal of
. Computing vol. 21, no. 1, pp. 193-2010, 1992.
computation. [22] M. Naor and L. Stockmeyer, “What can be Computed Lo&illyn
Proceedings of STOC'93993, pp. 184-193.
[23] S. Kutten and D. Peleg, “Fault-Local Distributed Memgli' in Proceed-
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